assignment Homework

Central Force
Central Forces 2021

Which of the following forces can be central forces? which cannot?

  1. The force on a test mass \(m\) in a gravitational field \(\vec{g~}\), i.e. \(m\vec g\)
  2. The force on a test charge \(q\) in an electric field \(\vec E\), i.e. \(q\vec E\)
  3. The force on a test charge \(q\) moving at velocity \(\vec{v~}\) in a magnetic field \(\vec B\), i.e. \(q\vec v \times \vec B\)

assignment Homework

Spiral Orbit
Central Forces 2021 A mass \(\mu\), under the influence of a central-force field, moves in a logarithmic spiral orbit given by \(r = ke^{\alpha \phi}\), where \(k\) and \(\alpha\) are constants. Determine the force law of this central-force field.

assignment Homework

Find Force Law
Central Forces 2021

Find the force law for a central-force field that allows a particle to move in a spiral orbit given by \(r=k\phi^2\), where \(k\) is a constant.

computer Mathematica Activity

30 min.

Effective Potentials
Central Forces 2021 Students use a pre-written Mathematica notebook or a Geogebra applet to explore how the shape of the effective potential function changes as the various parameters (angular momentum, force constant, reduced mass) are varied.

assignment Homework

Polar vs. Spherical Coordinates
Central Forces 2021

Show that the plane polar coordinates we have chosen are equivalent to spherical coordinates if we make the choices:

  1. The direction of \(z\) in spherical coordinates is the same as the direction of \(\vec L\).
  2. The \(\theta\) of spherical coordinates is chosen to be \(\pi/2\), so that the orbit is in the equatorial plane of spherical coordinates.

groups Whole Class Activity

10 min.

Air Hockey
Central Forces 2021

central forces potential energy classical mechanics

Students observe the motion of a puck tethered to the center of the airtable. Then they plot the potential energy for the puck on their small whiteboards. A class discussion follows based on what students have written on their whiteboards.

assignment Homework

Sum Shift
Central Forces 2021

In each of the following sums, shift the index \(n\rightarrow n+2\). Don't forget to shift the limits of the sum as well. Then write out all of the terms in the sum (if the sum has a finite number of terms) or the first five terms in the sum (if the sum has an infinite number of terms) and convince yourself that the two different expressions for each sum are the same:

  1. \begin{equation} \sum_{n=0}^3 n \end{equation}
  2. \begin{equation} \sum_{n=1}^5 e^{in\phi} \end{equation}
  3. \begin{equation} \sum_{n=0}^{\infty} a_n n(n-1)z^{n-2} \end{equation}

assignment Homework

Reduced Mass
Central Forces 2021

Using your favorite graphing package, make a plot of the reduced mass \(\mu\) as a function of \(m_1\) and \(m_2\). What about the shape of this graph tells you something about the physical world that you would like to remember. You should be able to find at least three things.

assignment Homework

Central Forces 2021

In a solid, a free electron doesn't see” a bare nuclear charge since the nucleus is surrounded by a cloud of other electrons. The nucleus will look like the Coulomb potential close-up, but be screened” from far away. A common model for such problems is described by the Yukawa or screened potential: \begin{equation} U(r)= -\frac{k}{r} e^{-\frac{r}{\alpha}} \end{equation}

  1. Graph the potential, with and without the exponential term. Describe how the Yukawa potential approximates the “real” situation. In particular, describe the role of the parameter \(\alpha\).
  2. Draw the effective potential for the two choices \(\alpha=10\) and \(\alpha=0.1\) with \(k=1\) and \(\ell=1\). For which value(s) of \(\alpha\) is there the possibility of stable circular orbits?

assignment Homework

Center of Mass for Two Uncoupled Particles
Central Forces 2021

Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways, with or without theorems about the center of mass motion. Write a short description comparing the two solutions.

face Lecture

5 min.

Quantum Reference Sheet
Central Forces 2021 (2 years)

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2021

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

assignment Homework

Lines in Polar Coordinates
Central Forces 2021

The general equation for a straight line in polar coordinates is given by: \begin{equation} r(\phi)=\frac{r_0}{\cos(\phi-\delta)} \end{equation} Find the polar equation for the straight lines below. You do NOT need to evaluate any complicated trig or inverse trig functions. You may want to try plotting the general polar equation to figure out the roles of the parameters.

  1. \(y=3\)
  2. \(x=3\)
  3. \(y=-3x+2\)

assignment Homework

Central Forces 2021

Consider the frictionless motion of a hockey puck of mass \(m\) on a perfectly circular bowl-shaped ice rink with radius \(a\). The central region of the bowl (\(r < 0.8a\)) is perfectly flat and the sides of the ice bowl smoothly rise to a height \(h\) at \(r = a\).

  1. Draw a sketch of the potential energy for this system. Set the zero of potential energy at the top of the sides of the bowl.
  2. Situation 1: the puck is initially moving radially outward from the exact center of the rink. What minimum velocity does the puck need to escape the rink?
  3. Situation 2: a stationary puck, at a distance \(\frac{a}{2}\) from the center of the rink, is hit in such a way that it's initial velocity \(\vec v_0\) is perpendicular to its position vector as measured from the center of the rink. What is the total energy of the puck immediately after it is struck?
  4. In situation 2, what is the angular momentum of the puck immediately after it is struck?
  5. Draw a sketch of the effective potential for situation 2.
  6. In situation 2, for what minimum value of \(\vec v_0\) does the puck just escape the rink?

group Small Group Activity

10 min.

Survivor Outer Space: A kinesthetic approach to (re)viewing center-of-mass
Central Forces 2021 A group of students, tethered together, are floating freely in outer space. Their task is to devise a method to reach a food cache some distance from their group.

assignment Homework

Ring Function
Central Forces 2021 Consider the normalized wavefunction \(\Phi\left(\phi\right)\) for a quantum mechanical particle of mass \(\mu\) constrained to move on a circle of radius \(r_0\), given by: \begin{equation} \Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)} \end{equation} where \(N\) is the normalization constant.
  1. Find \(N\).

  2. Plot this wave function.
  3. Plot the probability density.
  4. Find the probability that if you measured \(L_z\) you would get \(3\hbar\).
  5. What is the expectation value of \(L_z\) in this state?

assignment Homework

Visualization of Wave Functions on a Ring
Central Forces 2021 Using either this Geogebra applet or this Mathematica notebook, explore the wave functions on a ring. (Note: The Geogebra applet may be a little easier to use and understand and is accessible if you don't have access to Mathematica, but it is more limited in the wave functions that you can represent. Also, the animation is pretty jumpy in some browsers, especially Firefox. Imagine that the motion is smooth.)
  1. Look at graphs of the following states \begin{align} \Phi_1(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +\left|{-2}\right\rangle )\\ \Phi_2(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle -\left|{-2}\right\rangle )\\ \Phi_3(\phi)&=\frac{1}{\sqrt{2}}(\left|{2}\right\rangle +i\left|{-2}\right\rangle ) \end{align} Write a short description of how these states differ from each other.
  2. Find a state for which the probability density does not depend on time. Write the state in both ket and wave function notation. These are called stationary states. Generalize your result to give a characterization of the set of all possible states that are stationary states.
  3. Find a state that is right-moving. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are right-moving.
  4. Find a state that is a standing wave. Write the state in both ket and wave function notation. Generalize your result to give a characterization of the set of all possible states that are standing waves.

computer Computer Simulation

30 min.

Approximating Functions with Power Series
Static Fields 2022 (7 years)

Taylor series power series approximation

Power Series Sequence (E&M)

Students use prepared Sage code or a prepared Mathematica notebook to plot \(\sin\theta\) simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.

group Small Group Activity

30 min.

Working with Representations on the Ring
Central Forces 2021

assignment Homework

Quantum Particle in a 2-D Box
Central Forces 2021

(2 points each)

You know that the normalized spatial eigenfunctions for a particle in a 1-D box of length \(L\) are \(\sqrt{\frac{2}{L}}\sin{\frac{n\pi x}{L}}\). If you want the eigenfunctions for a particle in a 2-D box, then you just multiply together the eigenfunctions for a 1-D box in each direction. (This is what the separation of variables procedure tells you to do.)

  1. Find the normalized eigenfunctions for a particle in a 2-D box with sides of length \(L_x\) in the \(x\)-direction and length \(L_y\) in the \(y\)-direction.
  2. Find the Hamiltonian for a 2-D box and show that your eigenstates are indeed eigenstates and find a formula for the possible energies
  3. Any sufficiently smooth spatial wave function inside a 2-D box can be expanded in a double sum of the product wave functions, i.e. \begin{equation} \psi(x,y)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\; \hbox{eigenfunction}_n(x)\;\hbox{eigenfunction}_m(y) \end{equation} Using your expressions from part (a) above, write out all the terms in this sum out to \(n=3\), \(m=3\). Arrange the terms, conventionally, in terms of increasing energy.

    You may find it easier to work in bra/ket notation: \begin{align*} \left|{\psi}\right\rangle &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{n}\right\rangle \left|{m}\right\rangle \\ &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{nm}\right\rangle \end{align*}

  4. Find a formula for the \(c_{nm}\)s in part (b). Find the formula first in bra ket notation and then rewrite it in wave function notation.