format_list_numbered Sequence

Curvilinear Coordinate Sequence
The curvilinear coordinate sequence introduces cylindrical and spherical coordinates (including inconsistencies between physicists' and mathematicians' notational conventions) and the basis vectors adapted to these coordinate systems.

assignment Homework

Undo Formulas for Reduced Mass (Algebra)
Central Forces 2022 For systems of particles, we used the formulas \begin{align} \vec{R}_{cm}&=\frac{1}{M}\left(m_1\vec{r}_1+m_2\vec{r}_2\right) \nonumber\\ \vec{r}&=\vec{r}_2-\vec{r}_1 \label{cm} \end{align} to switch from a rectangular coordinate system that is unrelated to the system to coordinates adapted to the center-of-mass. After you have solved the equations of motion in the center-of-mass coordinates, you may want to transform back to the original coordinate system. Find the inverse transformation, i.e. solve for: \begin{align} \vec{r}_1&=\\ \vec{r}_2&= \end{align} Hint: The system of equations (\ref{cm}) is linear, i.e. each variable is to the first power, even though the variables are vectors. In this case, you can use all of the methods you learned for solving systems of equations while keeping the variables vector valued, i.e. you can safely ignore the fact that the \(\vec{r}\)s are vectors while you are doing the algebra.

assignment_ind Small White Board Question

10 min.

Curvilinear Coordinates Introduction
Static Fields 2022 (7 years)

Cylindrical coordinates spherical coordinates curvilinear coordinates

Curvilinear Coordinate Sequence

First, students are shown diagrams of cylindrical and spherical coordinates. Common notation systems are discussed, especially that physicists and mathematicians use opposite conventions for the angles \(\theta\) and \(\phi\). Then students are asked to check their understanding by sketching several coordinate equals constant surfaces on their small whiteboards.

group Small Group Activity

30 min.

Scalar Surface and Volume Elements
Static Fields 2022 (4 years)

Integration Sequence

Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.

group Small Group Activity

30 min.

Vector Differential--Curvilinear
Vector Calculus II 2022 (7 years)

vector calculus coordinate systems curvilinear coordinates

Integration Sequence

In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).

Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.

assignment Homework

Distance Formula in Curvilinear Coordinates

Ring Cycle Sequence

Static Fields 2022 (4 years)

The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

  1. Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.
  2. Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
  3. Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
  4. Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

keyboard Computational Activity

120 min.

Electrostatic potential of spherical shell
Computational Physics Lab II 2022 (2 years)

electrostatic potential spherical coordinates

Students solve numerically for the potential due to a spherical shell of charge. Although this potential is straightforward to compute using Gauss's Law, it serves as a nice example for numerically integrating in spherical coordinates because the correct answer is easy to recognize.

group Small Group Activity

30 min.

Vector Surface and Volume Elements
Static Fields 2022 (3 years)

Integration Sequence

Students use known algebraic expressions for vector line elements \(d\vec{r}\) to determine all simple vector area \(d\vec{A}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.

accessibility_new Kinesthetic

10 min.

Curvilinear Basis Vectors
Static Fields 2022 (6 years)

symmetry curvilinear coordinate systems basis vectors

Curvilinear Coordinate Sequence

Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).

group Small Group Activity

120 min.

Box Sliding Down Frictionless Wedge
Theoretical Mechanics 2021 (2 years)

Lagrangian Mechanics Generalized Coordinates Special Cases

Students solve for the equations of motion of a box sliding down (frictionlessly) a wedge, which itself slides on a horizontal surface, in order to answer the question "how much time does it take for the box to slide a distance \(d\) down the wedge?". This activities highlights finding kinetic energies when the coordinate system is not orthonormal and checking special cases, functional behavior, and dimensions.

accessibility_new Kinesthetic

30 min.

The Distance Formula (Star Trek)
Static Fields 2022 (4 years)

distance formula coordinate systems dot product vector addition

Ring Cycle Sequence

A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge
Static Fields 2022 (6 years)

coulomb's law electric field charge ring symmetry integral power series superposition

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

groups Whole Class Activity

10 min.

Pineapples and Pumpkins
Static Fields 2022 (4 years)

Integration Sequence

There are two versions of this activity:

As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.

As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distribued to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.

keyboard Computational Activity

120 min.

Electrostatic potential of four point charges
Computational Physics Lab II 2022 (2 years)

electrostatic potential python

Students write python programs to compute and visualize the potential due to four point charges. For students with minimal programming ability and no python experience, this activity can be a good introduction to writing code in python using numpy and matplotlib.

group Small Group Activity

30 min.

Covariation in Thermal Systems

Thermo Multivariable Functions

Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.

group Small Group Activity

30 min.

Total Charge
Static Fields 2022 (4 years)

charge charge density multiple integral scalar field coordinate systems differential elements curvilinear coordinates

Integration Sequence

In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.

group Small Group Activity

30 min.

Electrostatic Potential Due to a Pair of Charges (without Series)
Static Fields 2022 (3 years) Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). This activity can be paired with activity 29 to find the limiting cases of the potential on the axes of symmetry.

assignment Homework

Ideal gas in two dimensions
Ideal gas Entropy Chemical potential Thermal and Statistical Physics 2020
  1. Find the chemical potential of an ideal monatomic gas in two dimensions, with \(N\) atoms confined to a square of area \(A=L^2\). The spin is zero.

  2. Find an expression for the energy \(U\) of the gas.

  3. Find an expression for the entropy \(\sigma\). The temperature is \(kT\).

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge
Static Fields 2022 (6 years)

electrostatic potential charge linear charge density taylor series power series scalar field superposition symmetry distance formula

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

assignment Homework

Center of Mass for Two Uncoupled Particles
Central Forces 2022 (2 years)

Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways, with or without theorems about the center of mass motion. Write a short description comparing the two solutions.