assignment Homework

Total Current, Square Cross-Section

Integration Sequence

Static Fields 2023 (6 years)
  1. Current \(I\) flows down a wire with square cross-section. The length of the square side is \(L\). If the current is uniformly distributed over the entire area, find the current density .
  2. If the current is uniformly distributed over the outer surface only, find the current density .

assignment Homework

Current from a Spinning Cylinder
A solid cylinder with radius \(R\) and height \(H\) has its base on the \(x,y\)-plane and is symmetric around the \(z\)-axis. There is a fixed volume charge density on the cylinder \(\rho=\alpha z\). If the cylinder is spinning with period \(T\):
  1. Find the volume current density.
  2. Find the total current.

assignment Homework

Total Current, Circular Cross Section

Integration Sequence

Static Fields 2023 (5 years)

A current \(I\) flows down a cylindrical wire of radius \(R\).

  1. If it is uniformly distributed over the surface, give a formula for the surface current density \(\vec K\).
  2. If it is distributed in such a way that the volume current density, \(|\vec J|\), is inversely proportional to the distance from the axis, give a formula for \(\vec J\).

assignment Homework

Current in a Wire
Static Fields 2023 (4 years) The current density in a cylindrical wire of radius \(R\) is given by \(\vec{J}(\vec{r})=\alpha s^3\cos^2\phi\,\hat{z}\). Find the total current in the wire.

assignment Homework

Magnetic Field and Current
Static Fields 2023 (4 years) Consider the magnetic field \[ \vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases} \]
  1. Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
  2. Find a formula for the current density that creates this magnetic field.
  3. Interpret your formula for the current density, i.e. explain briefly in words where the current is.

accessibility_new Kinesthetic

10 min.

Acting Out Current Density
Static Fields 2023 (6 years)

Steady current current density magnetic field idealization

Integration Sequence

Ring Cycle Sequence

Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

format_list_numbered Sequence

Ring Cycle Sequence
Students calculate electrostatic fields (\(V\), \(\vec{E}\)) and magnetostatic fields (\(\vec{A}\), \(\vec{B}\)) from charge and current sources with a common geometry. The sequence of activities is arranged so that the mathematical complexity of the formulas students encounter increases with each activity. Several auxiliary activities allow students to focus on the geometric/physical meaning of the distance formula, charge densities, and steady currents. A meta goal of the entire sequence is that students gain confidence in their ability to parse and manipulate complicated equations.

group Small Group Activity

30 min.

Magnetic Vector Potential Due to a Spinning Charged Ring
Static Fields 2023 (6 years)

compare and contrast mathematica magnetic vector potential magnetic fields vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Magnetic Field Due to a Spinning Ring of Charge
Static Fields 2023 (7 years)

magnetic fields current Biot-Savart law vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

face Lecture

120 min.

Phase transformations
Thermal and Statistical Physics 2020

phase transformation Clausius-Clapeyron mean field theory thermodynamics

These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.