format_list_numbered Sequence

Curvilinear Coordinate Sequence
The curvilinear coordinate sequence introduces cylindrical and spherical coordinates (including inconsistencies between physicists' and mathematicians' notational conventions) and the basis vectors adapted to these coordinate systems.
Find the surface area of a sphere using cylindrical coordinates. Note: The fact that you can describe spheres nicely in cylindrical coordinates underlies the equal area cylindrical map project that allows you to draw maps of the earth where everything has the correct area, even if the shapes seem distorted. If you want to plot something like population density, you need an area preserving map projection.
  • Found in: AIMS Maxwell, Static Fields, Problem-Solving course(s)

groups Whole Class Activity

10 min.

Curvilinear Coordinates Introduction
First, students are shown diagrams of cylindrical and spherical coordinates. Common notation systems are discussed, especially that physicists and mathematicians use opposite conventions for the angles \(\theta\) and \(\phi\). Then students are asked to check their understanding by sketching several coordinate equals constant surfaces on their small whiteboards.

group Small Group Activity

30 min.

Curvilinear Volume Elements
Students construct the volume element in cylindrical and spherical coordinates.
  • Found in: Vector Calculus I course(s)

group Small Group Activity

10 min.

Angular Momentum in Polar Coordinates
Students learn how to express Angular Momentum as a vector quantity in polar coordinates, and then in Cylindrical and Spherical Coordinates

accessibility_new Kinesthetic

10 min.

Curvilinear Basis Vectors
Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).

group Small Group Activity

30 min.

Vector Differential--Curvilinear

In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).

Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.

Write \(\vec{dr}\) in rectangular, cylindrical, and spherical coordinates.

  1. Rectangular: \begin{equation} \vec{dr}= \end{equation}
  2. Cylindrical: \begin{equation} \vec{dr}= \end{equation}
  3. Spherical: \begin{equation} \vec{dr}= \end{equation}

  • Found in: Static Fields course(s)

group Small Group Activity

30 min.

Scalar Surface and Volume Elements

Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

  • Find \(dA\) on the surface of an (open) cone in both cylindrical and spherical coordinates. Hint: Be smart about how you coordinatize the cone.
  • Using integration, find the surface area of an (open) cone with height \(H\) and radius \(R\). Do this problem in both cylindrical and spherical coordinates.

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

group Small Group Activity

30 min.

Vector Surface and Volume Elements

Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.

  • Found in: AIMS Maxwell, Static Fields, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

Consider the finite line with a uniform charge density from class.

  1. Write an integral expression for the electric field at any point in space due to the finite line. In addition to your usual physics sense-making, you must include a clearly labeled figure and discuss what happens to the direction of the unit vectors as you integrate.Consider the finite line with a uniform charge density from class.
  2. Perform the integral to find the \(z\)-component of the electric field. In addition to your usual physics sense-making, you must compare your result to the gradient of the electric potential we found in class. (If you want to challenge yourself, do the \(s\)-component as well!)

The electrostatic potential due to a point charge at the origin is given by: \begin{equation} V=\frac{1}{4\pi\epsilon_0} \frac{q}{r} \end{equation}

  1. Find the electric field due to a point charge at the origin as a gradient in rectangular coordinates.
  2. Find the electric field due to a point charge at the origin as a gradient in spherical coordinates.
  3. Find the electric field due to a point charge at the origin as a gradient in cylindrical coordinates.

  • Found in: Gradient Sequence sequence(s) Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

Start with \(d\vec{r}\) in rectangular, cylindrical, and spherical coordinates. Use these expressions to write the scalar area elements \(dA\) (for different coordinate equals constant surfaces) and the volume element \(d\tau\). It might help you to think of the following surfaces: The various sides of a rectangular box, a finite cylinder with a top and a bottom, a half cylinder, and a hemisphere with both a curved and a flat side, and a cone.

  1. Rectangular: \begin{align} dA&=\\ d\tau&= \end{align}
  2. Cylindrical: \begin{align} dA&=\\ d\tau&= \end{align}
  3. Spherical: \begin{align} dA&=\\ d\tau&= \end{align}

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

  1. Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.
  2. Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
  3. Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
  4. Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

  • Found in: E&M Ring Cycle Sequence sequence(s) Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

group Small Group Activity

30 min.

Flux through a Cone
Students calculate the flux from the vector field \(\vec{F} = C\, z\, \hat{z}\) through a right cone of height \(H\) and radius \(R\) .
  • Found in: Static Fields, AIMS Maxwell course(s) Found in: Integration Sequence sequence(s)

groups Whole Class Activity

10 min.

Pineapples and Pumpkins

There are two versions of this activity:

As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.

As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area and volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distributed to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.

  • Found in: Static Fields, AIMS Maxwell, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

group Small Group Activity

30 min.

Total Charge
In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge

Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Stokes' Theorem
Students compute both sides of Stokes' theorem.
  • Found in: Vector Calculus II, Surfaces/Bridge Workshop course(s)