title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

30 min.

Total Charge: Spheres & Cylinders

Calculating Total Charge

Each group will be given one of the charge distributions given below: (\(\alpha\) and \(k\) are constants with dimensions appropriate for the specific example.)

  • Spherical Symmetery
    1. A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \(\rho (\vec{r}) = \alpha\, r^{3}\)

    2. A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \(\rho (\vec{r}) =\alpha\, e^{(kr)^{3}}\)

    3. A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \(\rho (\vec{r}) = \alpha\, \frac{1}{r^{2}}\, e^{(kr)}\)
  • Cylindrical Symmetry

    1. A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \(\rho (\vec{r}) = \alpha\, s^{3}\)

    2. A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \(\rho (\vec{r}) =\alpha\, e^{(ks)^{2}}\)

    3. A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \(\rho (\vec{r}) = \alpha\, \frac{1}{s}\, e^{(ks)}\)

For your group's case, answer the following questions:

  1. Find the total charge. (If the total charge is infinite, decide what you should calculate instead to provide a meaningful answer.)
  2. Find the dimensions of the constants \(\alpha\) and \(k\).

Instructor's Guide

Introduction

We usually start with a mini-lecture reminder that total charge is calculated by integrating over the charge density by chopping up the charge density, multiplying by the appropriate geometric differential (length, area, or volume element), and adding up the contribution from each of the pieces. Chop, Multiply, Add is a mantra that we want students to use whenever they are doing integration in a physical context.

The students should already know formulas for the volume elements in cylindrical and spherical coordinates. We recommend Scalar Surface and Volume Elements as a prerequisite.

We start the activity with the formulas \(Q=\int\rho(\vec{r}')d\tau'\), \(Q=\int\sigma(\vec{r}')dA'\), and \(Q=\int\lambda(\vec{r}')ds'\) written on the board. We emphasize that choosing the appropriate formula by looking at the geometry of the problem they are doing, is part of the task.

Each student group is assigned a particular charge density that varies in space and asked to calculate the total charge. This activity is an example of https://paradigms.oregonstate.edu/whitepaper/compare-and-contrast-activity.

Student Conversations

This activity helps students practice the mechanics of making total charge calculations.

  • Order of Integration When doing multiple integrals, students rarely think about the geometric interpretation of the order of integration. If they do the \(r\) integral first, then they are integrating along a radial line. What about \(\theta\) and \(\phi\). If this topic does not come up in the small groups, it makes a rich discussion in the wrap-up.
  • Limits of Integration some students need some practice determining the limits of the integrals. This issue becomes especially important for the groups working with a cylinder - the handout does not give the students a height of the cylinder. There are two acceptable resolutions to this situation. Students can “name the thing they don't know” and leave the height as a parameter of the problem. Students can also give the answer as the total charge per unit length. We usually talk the groups through both of these options.
  • Dimensions Students have some trouble determining the dimensions of constants. Making students talk through their reasoning is an excellent exercise. In particular, they should know that the argument of the exponential function (indeed, the argument of any special fuction other than the logarithm) must be dimensionless.
  • Integration Some students need a refresher in integrating exponentials and making \(u\)-substitutions.

Wrap-up

You might ask two groups to present their solutions, one spherical and one cylindrical so that everyone can see an example of both. Examples (b) and (f) are nice illustrative examples.

Small White Board Question

10 min.

Vector Differential--Rectangular

In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.

This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..

Small Group Activity

30 min.

Vector Surface and Volume Elements

Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.

  • Found in: AIMS Maxwell, Static Fields, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

Small Group Activity

30 min.

Scalar Surface and Volume Elements

Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

Small Group Activity

30 min.

Finding Matrix Elements
In this small group activity, students multiply a general 3x3 matrix with standard basis row/column vectors to pick out individual matrix elements. Students generate the expressions for the matrix elements in bra/ket notation.

Small Group Activity

30 min.

Curvilinear Volume Elements
Students construct the volume element in cylindrical and spherical coordinates.
  • Found in: Vector Calculus I course(s)

Problem

Diagonalization
  1. Let \[|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \qquad \rm{and} \qquad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\] Show that \(\left|{\alpha}\right\rangle \) and \(\left|{\beta}\right\rangle \) are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)
  2. Consider the matrix \[C\doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \] Show that the vectors \(|\alpha\rangle\) and \(|\beta\rangle\) are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)
  3. A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix \(E\) that corresponds to \(C\) expanded in the basis of its eigenvectors, i.e. calculate \(\langle\alpha|C|\alpha\rangle\), \(\langle\alpha|C|\beta\rangle\), \(\langle\beta|C|\alpha\rangle\) and \(\langle\beta|C|\beta\rangle\) and arrange them into a sensible matrix \(E\). Explain why you arranged the matrix elements in the order that you did.
  4. Find the determinants of \(C\) and \(E\). How do these determinants compare to the eigenvalues of these matrices?

Problem

5 min.

Dirac Practice
For this problem, use the vectors \(|a\rangle = 4 |1\rangle - 3 |2\rangle\) and \(|b\rangle = -i |1\rangle + |2\rangle\).
  1. Find \(\langle a | b \rangle\) and \(\langle b | a \rangle\). Discuss how these two inner products are related to each other.
  2. For \(\hat{Q}\doteq \begin{pmatrix} 2 & i \\ -i & -2 \end{pmatrix} \), calculate \(\langle1|\hat{Q}|2\rangle\), \(\langle2|\hat{Q}|1\rangle\), \(\langle a|\hat{Q}| b \rangle\) and \(\langle b|\hat{Q}|a \rangle\).
  3. What kind of mathematical object is \(|a\rangle\langle b|\)? What is the result if you multiply a ket (for example, \(| a\rangle\) or \(|1\rangle\)) by this expression? What if you multiply this expression by a bra?
Students use completeness relations to write a matrix element of a spin component in a different basis.

Small Group Activity

5 min.

Calculating a Total Differential
Students are placed into small groups and asked to calculate the total differential of a function of two variables, each of which is in turn expressed in terms of two other variables.

Small Group Activity

120 min.

Projectile with Linear Drag
Students consider projectile motion of an object that experiences drag force that in linear with the velocity. Students consider the horizontal motion and the vertical motion separately. Students solve Newton's 2nd law as a differential equation.

For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

Small Group Activity

30 min.

Vector Differential--Curvilinear

Cylindrical Coordinates:

Find the general form for \(d\vec{r}\) in cylindrical coordinates by determining \(d\vec{r}\) along the specific paths below.

  • Path 1 from \((s,\phi,z)\) to \((s+ds,\phi,z)\): \[d\vec{r}=\hspace{35em}\]
  • Path 2 from \((s,\phi,z)\) to \((s,\phi,z+dz)\): \[d\vec{r}=\hspace{35em}\]
  • Path 3 from \((s,\phi,z)\) to \((s,\phi+d\phi,z)\): \[d\vec{r}=\hspace{35em}\]

If all three coordinates are allowed to change simultaneously, by an infinitesimal amount, we could write this \(d\vec{r}\) for any path as:

\[d\vec{r}=\hspace{35em}\]

This is the general line element in cylindrical coordinates.

Figure 1: \(d\vec{r}\) in cylindrical coordinates


Spherical Coordinates:

Find the general form for \(d\vec{r}\) in spherical coordinates by determining \(d\vec{r}\) along the specific paths below.

  • Path 1 from \((r,\theta,\phi)\) to \((r+dr,\theta,\phi)\): \[d\vec{r}=\hspace{35em}\]
  • Path 2 from \((r,\theta,\phi)\) to \((r,\theta+d\theta,\phi)\): \[d\vec{r}=\hspace{35em}\]
  • Path 3 from \((r,\theta,\phi)\) to \((r,\theta,\phi+d\phi)\): (Be careful, this is a tricky one!) \[d\vec{r}=\hspace{35em}\]

If all three coordinates are allowed to change simultaneously, by an infinitesimal amount, we could write this \(d\vec{r}\) for any path as:

\[d\vec{r}=\hspace{35em}\]

This is the general line element in spherical coordinates.

Figure 2: \(d\vec{r}\) in spherical coordinates

Instructor's Guide

Main Ideas

This activity allows students to derive formulas for \(d\vec{r}\) in cylindrical, and spherical coordinates, using purely geometric reasoning. These formulas form the basis of our unified view of all of vector calculus, so this activity is essential. For more information on this unified view, see our publications, especially: Using differentials to bridge the vector calculus gap

Students' Task

Using a picture as a guide, students write down an algebraic expression for the vector differential in different coordinate systems (cylindrical, spherical).

Introduction

Begin by drawing a curve (like a particle trajectory, but avoid "time" in the language) and an origin on the board. Show the position vector \(\vec{r}\) that points from the origin to a point on the curve and the position vector \(\vec{r}+d\vec{r}\) to a nearby point. Show the vector \(d\vec{r}\) and explain that it is tangent to the curve.

It may help to do activity Vector Differential--Rectangular as an introduction.

Student Conversations

For the case of cylindrical coordinates, students who are pattern-matching will write \(d\vec{r} = dr\, \hat{r} + d\phi\, \hat{\phi} + dz\, \hat{z}\). Point out that \(\phi\) is dimensionless and that path two is an arc with arclength \(r\, d\phi\).

Some students will remember the formula for arclength, but many will not. The following sequence of prompts can be helpful.

  • What is the circumference of a circle?
  • What is the arclength for a half circle?
  • What is the arclength for the angle \(\pi\over 2\)?
  • What is the arclength for the angle \(\phi\)?
  • What is the arclength for the angle \(d\phi\)?

For the spherical case, students who are pattern matching will now write \(d\vec{r} = dr\, \hat{r} + d\phi\, \hat{\phi} + d\theta\, \hat{\theta}\). It helps to draw a picture in cross-section so that they can see that the circle whose arclength gives the coefficient of \(\hat{\theta}\) has radius \(r\sin\theta\). It can also help to carry around a basketball to write on to talk about the three dimensional geometry of this problem.

Wrap-up

The only wrap-up needed is to make sure that all students have (and understand the geometry of!) the correct formulas for \(d\vec{r}\).

Whole Class Activity

10 min.

Pineapples and Pumpkins

There are two versions of this activity:

As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.

As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area and volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distributed to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.

  • Found in: Static Fields, AIMS Maxwell, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

Computational Activity

120 min.

Position operator
Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.

Small Group Activity

30 min.

Quantifying Change
In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.