Activities
In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.
In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.
This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..
Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.
Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.
In this small group activity, students multiply a general 3x3 matrix with standard basis row/column vectors to pick out individual matrix elements. Students generate the expressions for the matrix elements in bra/ket notation.
Students construct the volume element in cylindrical and spherical coordinates.
Problem
- Let \[|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \qquad \rm{and} \qquad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\] Show that \(\left|{\alpha}\right\rangle \) and \(\left|{\beta}\right\rangle \) are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)
- Consider the matrix \[C\doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \] Show that the vectors \(|\alpha\rangle\) and \(|\beta\rangle\) are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)
- A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix \(E\) that corresponds to \(C\) expanded in the basis of its eigenvectors, i.e. calculate \(\langle\alpha|C|\alpha\rangle\), \(\langle\alpha|C|\beta\rangle\), \(\langle\beta|C|\alpha\rangle\) and \(\langle\beta|C|\beta\rangle\) and arrange them into a sensible matrix \(E\). Explain why you arranged the matrix elements in the order that you did.
- Find the determinants of \(C\) and \(E\). How do these determinants compare to the eigenvalues of these matrices?
For this problem, use the vectors \(|a\rangle = 4 |1\rangle - 3 |2\rangle\) and \(|b\rangle = -i |1\rangle + |2\rangle\).
- Find \(\langle a | b \rangle\) and \(\langle b | a \rangle\). Discuss how these two inner products are related to each other.
- For \(\hat{Q}\doteq \begin{pmatrix} 2 & i \\ -i & -2 \end{pmatrix} \), calculate \(\langle1|\hat{Q}|2\rangle\), \(\langle2|\hat{Q}|1\rangle\), \(\langle a|\hat{Q}| b \rangle\) and \(\langle b|\hat{Q}|a \rangle\).
- What kind of mathematical object is \(|a\rangle\langle b|\)? What is the result if you multiply a ket (for example, \(| a\rangle\) or \(|1\rangle\)) by this expression? What if you multiply this expression by a bra?
Writing an operator in matrix notation in its own basis is easy: it is diagonal with the eigenvalues on the diagonal.
What if I want to calculate the matrix elements using a different basis??
The eigenvalue equation tells me what happens when an operator acts on its own eigenstate. For example: \(\hat{S}_y\left|{\pm}\right\rangle _y=\pm\frac{\hbar}{2}\left|{\pm}\right\rangle _y\)
In Dirac bra-ket notation, to know what an operator does to a ket, I need to write the ket in the basis that is the eigenstates of the operator (in order to use the eigenvalue equation.)
One way to do this is to stick completeness relationships into the braket: \begin{eqnarray*} \left\langle {+}\right|\hat{S_y}\left|{+}\right\rangle = \left\langle {+}\right|(I)\hat{S_y}(I)\left|{+}\right\rangle \end{eqnarray*}
where \(I\) is the identity operator: \(I=\color{blue}{\left|{+}\right\rangle _{yy}\left\langle {+}\right|}\;+\;\color{blue}{\left|{-}\right\rangle _{yy}\left\langle {-}\right|}\). This effectively rewrites the \(\left|{+}\right\rangle \) in the \(\left|{\pm}\right\rangle _y\) basis.
Find the top row matrix elements of the operator \(\hat{S}_y\) in the \(S_z\) basis by inserting completeness relations into the brakets. (The answer is already on the Spins Reference Sheet, but I want you to demonstrate the calculation.)
In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).
Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.
Students are placed into small groups and asked to calculate the total differential of a function of two variables, each of which is in turn expressed in terms of two other variables.
Students consider projectile motion of an object that experiences drag force that in linear with the velocity. Students consider the horizontal motion and the vertical motion separately. Students solve Newton's 2nd law as a differential equation.
Problem
For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.
There are two versions of this activity:
As a whole class activity, the instructor cuts a pumpkin in order to produce a small volume element \(d\tau\), interspersing their work with a sequence of small whiteboard questions. This version of the activity is described here.
As a small group activity, students are given pineapple rounds and pumpkin wedges to explore area and volume elements in cylindrical and spherical coordinate systems. In this version of the activity, the fruit is distributed to the students with appropriate children's pumpkin cutting equipment, as part of activities Vector Differential--Curvilinear, Scalar Surface and Volume Elements, or Vector Surface and Volume Elements.
Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.
In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.