assignment Homework

Adiabatic Compression
ideal gas internal energy engine Energy and Entropy 2020

A diesel engine requires no spark plug. Rather, the air in the cylinder is compressed so highly that the fuel ignites spontaneously when sprayed into the cylinder.

In this problem, you may treat air as an ideal gas, which satisfies the equation \(pV = Nk_BT\). You may also use the property of an ideal gas that the internal energy depends only on the temperature \(T\), i.e. the internal energy does not change for an isothermal process. For air at the relevant range of temperatures the heat capacity at fixed volume is given by \(C_V=\frac52Nk_B\), which means the internal energy is given by \(U=\frac52Nk_BT\).

Note: in this problem you are expected to use only the equations given and fundamental physics laws. Looking up the formula in a textbook is not considered a solution at this level.

  1. If the air is initially at room temperature (taken as \(20^{o}C\)) and is then compressed adiabatically to \(\frac1{15}\) of the original volume, what final temperature is attained (before fuel injection)?

  2. By what factor does the pressure increase?

group Small Group Activity

30 min.

Total Charge
Static Fields 2022 (4 years)

charge charge density multiple integral scalar field coordinate systems differential elements curvilinear coordinates

Integration Sequence

In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.

group Small Group Activity

30 min.

Scalar Surface and Volume Elements
Static Fields 2022 (4 years)

Integration Sequence

Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.

group Small Group Activity

30 min.

Flux through a Cone
Static Fields 2022 (3 years)

Integration Sequence

Students calculate the flux from the vector field \(\vec{F} = C\, z\, \hat{z}\) through a right cone of height \(H\) and radius \(R\) .

group Small Group Activity

30 min.

Calculating Coefficients for a Power Series
Static Fields 2022 (5 years)

Taylor series power series approximation

Power Series Sequence (E&M)

This activity starts with a brief lecture introduction to power series and a short derivation of the formula for calculating the coefficients of a power series for a particular function:

\[c_n={1\over n!}\, f^{(n)}(z_0)\]

After a brief lecture deriving the formula for the coefficients of a power series, students compute the power series coefficients for a \(\sin\theta\) (around both the origin and \(\frac{\pi}{6}\)). The meaning of these coefficients and the convergence behavior for each approximation is discussed in the whole-class wrap-up.

group Small Group Activity

5 min.

Acting Out Flux
Static Fields 2022 (3 years)

flux electrostatics vector fields

Students hold rulers and meter sticks to represent a vector field. The instructor holds a hula hoop to represent a small area element. Students are asked to describe the flux of the vector field through the area element.

group Small Group Activity

30 min.

Quantifying Change (Remote)

Thermo Derivatives

In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.

group Small Group Activity

120 min.

Projectile with Linear Drag
Theoretical Mechanics 2021 (2 years)

Projectile Motion Drag Forces Newton's 2nd Law Separable Differential Equations

Students consider projectile motion of an object that experiences drag force that in linear with the velocity. Students consider the horizontal motion and the vertical motion separately. Students solve Newton's 2nd law as a differential equation.

group Small Group Activity

30 min.

Expectation Values for a Particle on a Ring
Central Forces 2021

central forces quantum mechanics eigenstates eigenvalues hermitian operators quantum measurements degeneracy expectation values time dependence

Quantum Ring Sequence

Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.

assignment Homework

Derivatives from Data (NIST)
Energy and Entropy 2021 (2 years) Use the NIST web site “Thermophysical Properties of Fluid Systems” to answer the following questions. This site is an excellent resource for finding experimentally measured properties of fluids.
  1. Find the partial derivatives \[\left(\frac{\partial {S}}{\partial {T}}\right)_{p}\] \[\left(\frac{\partial {S}}{\partial {T}}\right)_{V}\] where \(p\) is the pressure, \(V\) is the volume, \(S\) is the entropy, and \(T\) is the temperature. Please find these derivatives for one gram of methanol at one atmosphere of pressure and at room temperature.
  2. Why does it take only two variables to define the state?
  3. Why are the derivatives above different?
  4. What do the words isobaric, isothermal, and isochoric mean?

assignment Homework

Ring Function
Central Forces 2021 Consider the normalized wavefunction \(\Phi\left(\phi\right)\) for a quantum mechanical particle of mass \(\mu\) constrained to move on a circle of radius \(r_0\), given by: \begin{equation} \Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)} \end{equation} where \(N\) is the normalization constant.
  1. Find \(N\).

  2. Plot this wave function.
  3. Plot the probability density.
  4. Find the probability that if you measured \(L_z\) you would get \(3\hbar\).
  5. What is the expectation value of \(L_z\) in this state?

assignment Homework

Free energy of a harmonic oscillator
Helmholtz free energy harmonic oscillator Thermal and Statistical Physics 2020

A one-dimensional harmonic oscillator has an infinite series of equally spaced energy states, with \(\varepsilon_n = n\hbar\omega\), where \(n\) is an integer \(\ge 0\), and \(\omega\) is the classical frequency of the oscillator. We have chosen the zero of energy at the state \(n=0\) which we can get away with here, but is not actually the zero of energy! To find the true energy we would have to add a \(\frac12\hbar\omega\) for each oscillator.

  1. Show that for a harmonic oscillator the free energy is \begin{equation} F = k_BT\log\left(1 - e^{-\frac{\hbar\omega}{k_BT}}\right) \end{equation} Note that at high temperatures such that \(k_BT\gg\hbar\omega\) we may expand the argument of the logarithm to obtain \(F\approx k_BT\log\left(\frac{\hbar\omega}{kT}\right)\).

  2. From the free energy above, show that the entropy is \begin{equation} \frac{S}{k_B} = \frac{\frac{\hbar\omega}{kT}}{e^{\frac{\hbar\omega}{kT}}-1} - \log\left(1-e^{-\frac{\hbar\omega}{kT}}\right) \end{equation}

    Entropy of a simple harmonic oscillator
    Heat capacity of a simple harmonic oscillator
    This entropy is shown in the nearby figure, as well as the heat capacity.

group Small Group Activity

30 min.

Operators & Functions
Quantum Fundamentals 2021 Students are asked to:
  • Test to see if one of the given functions is an eigenfunction of the given operator
  • See if they can write the functions that are found not to be eigenfunctions as a linear combination of eigenfunctions.

face Lecture

30 min.

Energy and heat and entropy
Energy and Entropy 2021 (2 years)

latent heat heat capacity internal energy entropy

This short lecture introduces the ideas required for Ice Calorimetry Lab or Microwave oven Ice Calorimetry Lab.

face Lecture

120 min.

Chemical potential and Gibbs distribution
Thermal and Statistical Physics 2020

chemical potential Gibbs distribution grand canonical ensemble statistical mechanics

These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.

group Small Group Activity

30 min.

Using \(pV\) and \(TS\) Plots
Energy and Entropy 2021 (2 years)

work heat first law energy

Students work out heat and work for rectangular paths on \(pV\) and \(TS\) plots. This gives with computing heat and work, applying the First Law, and recognizing that internal energy is a state function, which cannot change after a cyclic process.

face Lecture

120 min.

Entropy and Temperature
Thermal and Statistical Physics 2020

paramagnet entropy temperature statistical mechanics

These lecture notes for the second week of Thermal and Statistical Physics involve relating entropy and temperature in the microcanonical ensemble, using a paramagnet as an example. These notes include a few small group activities.

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge
Static Fields 2022 (6 years)

electrostatic potential charge linear charge density taylor series power series scalar field superposition symmetry distance formula

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

face Lecture

120 min.

Phase transformations
Thermal and Statistical Physics 2020

phase transformation Clausius-Clapeyron mean field theory thermodynamics

These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.

group Small Group Activity

120 min.

Box Sliding Down Frictionless Wedge
Theoretical Mechanics 2021 (2 years)

Lagrangian Mechanics Generalized Coordinates Special Cases

Students solve for the equations of motion of a box sliding down (frictionlessly) a wedge, which itself slides on a horizontal surface, in order to answer the question "how much time does it take for the box to slide a distance \(d\) down the wedge?". This activities highlights finding kinetic energies when the coordinate system is not orthonormal and checking special cases, functional behavior, and dimensions.