title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both



30 min.

The Distance Formula (Star Trek)
A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]

Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). This activity can be paired with activity 29 to find the limiting cases of the potential on the axes of symmetry.

Learn more about the geometry of \(\vert \vec{r}-\vec{r'}\vert\) in two dimensions.

  1. Make sketches of the following functions, by hand, on the same axes: \begin{align*} y &= \sin x\\ y &= \sin(2+x) \end{align*} Briefly describe the role that the number 2 plays in the shape of the second graph
  2. Make a sketch of the graph \begin{equation*} \vert \vec{r} - \vec{a} \vert = 2 \end{equation*}

    for each of the following values of \(\vec a\): \begin{align*} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align*}

  3. Derive a more familiar equation equivalent to \begin{equation*} \vert \vec r - \vec a \vert = 2 \end{equation*} for arbitrary \(\vec a\), by expanding \(\vec r\) and \(\vec a\) in rectangular coordinates. Simplify as much as possible. (Ok, ok, I know this is a terribly worded question. What do I mean by “more familiar"? What do I mean by “simplify as much as possible"? Why am I making you read my mind? Try it anyway. Real life is not full of carefully worded problems. Bonus points to anyone who can figure out a better way of wording the question that doesn't give the point away.)
  4. Write a brief description of the geometric meaning of the equation \begin{equation*} \vert \vec r - \vec a \vert = 2 \end{equation*}

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

Hint: Be sure to use the textbook: https://books.physics.oregonstate.edu/GSF/coords2.html

  1. (2 pts) Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.

  2. (2 pts) Show that this same distance written in cylindrical coordinates is: \begin{equation*} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation*}
  3. (2 pts) Show that this same distance written in spherical coordinates is: \begin{equation*} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation*}
  4. (2 pts) Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s) Found in: E&M Ring Cycle Sequence sequence(s)

Small Group Activity

30 min.

Calculating Coefficients for a Power Series

This activity starts with a brief lecture introduction to power series and a short derivation of the formula for calculating the power series coefficients.

\[c_n={1\over n!}\, f^{(n)}(z_0)\]

Students use this formula to compute the power series coefficients for a \(\sin\theta\) (around both the origin and (if time allows) \(\frac{\pi}{6}\)). The meaning of these coefficients and the convergence behavior for each approximation is discussed in the whole-class wrap-up and in the follow-up activity: Visualization of Power Series Approximations.

  • Taylor Series Coefficents Power Series
    Found in: Theoretical Mechanics, AIMS Maxwell, Static Fields, Problem-Solving, None course(s) Found in: Power Series Sequence (Mechanics), Power Series Sequence (E&M) sequence(s)
Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.
A group of students, tethered together, are floating freely in outer space. Their task is to devise a method to reach a food cache some distance from their group.
  • Found in: Central Forces course(s)


10 min.

Acting Out Effective Potentials
A student is invited to “act out” motion corresponding to a plot of effective potential vs. distance. The student plays the role of the “Earth” while the instructor plays the “Sun”.

Small Group Activity

120 min.

Box Sliding Down Frictionless Wedge
Students solve for the equations of motion of a box sliding down (frictionlessly) a wedge, which itself slides on a horizontal surface, in order to answer the question "how much time does it take for the box to slide a distance \(d\) down the wedge?". This activities highlights finding kinetic energies when the coordinate system is not orthonormal and checking special cases, functional behavior, and dimensions.

Small Group Activity

30 min.

de Broglie wavelength after freefall
In this activity students combine energy conservation with the relationship between the de Broglie wavelength and momentum to find the wavelength of atoms that have been dropped a given distance.