format_list_numbered Sequence

E&M Ring Cycle Sequence
Students calculate electrostatic fields (\(V\), \(\vec{E}\)) and magnetostatic fields (\(\vec{A}\), \(\vec{B}\)) from charge and current sources with a common geometry. The sequence of activities is arranged so that the mathematical complexity of the formulas students encounter increases with each activity. Several auxiliary activities allow students to focus on the geometric/physical meaning of the distance formula, charge densities, and steady currents. A meta goal of the entire sequence is that students gain confidence in their ability to parse and manipulate complicated equations.

A current \(I\) flows down a cylindrical wire of radius \(R\).

  1. If it is uniformly distributed over the surface, give a formula for the surface current density \(\vec K\).
  2. If it is distributed in such a way that the volume current density, \(|\vec J|\), is inversely proportional to the distance from the axis, give a formula for \(\vec J\).

  • Found in: Integration Sequence sequence(s) Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

accessibility_new Kinesthetic

30 min.

The Distance Formula (Star Trek)
A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]
Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). This activity can be paired with activity 29 to find the limiting cases of the potential on the axes of symmetry.

Learn more about the geometry of \(\vert \vec{r}-\vec{r'}\vert\) in two dimensions.

  1. Make sketches of the following functions, by hand, on the same axes: \begin{align} y &= \sin x\\ y &= \sin(2+x) \end{align} Briefly describe the role that the number 2 plays in the shape of the second graph
  2. Make a sketch of the graph \begin{equation} \vert \vec{r} - \vec{a} \vert = 2 \end{equation}

    for each of the following values of \(\vec a\): \begin{align} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align}

  3. Derive a more familiar equation equivalent to \begin{equation} \vert \vec r - \vec a \vert = 2 \end{equation} for arbitrary \(\vec a\), by expanding \(\vec r\) and \(\vec a\) in rectangular coordinates. Simplify as much as possible. (Ok, ok, I know this is a terribly worded question. What do I mean by “more familiar"? What do I mean by “simplify as much as possible"? Why am I making you read my mind? Try it anyway. Real life is not full of carefully worded problems. Bonus points to anyone who can figure out a better way of wording the question that doesn't give the point away.)
  4. Write a brief description of the geometric meaning of the equation \begin{equation} \vert \vec r - \vec a \vert = 2 \end{equation}

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

  1. Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.
  2. Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
  3. Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
  4. Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

  • Found in: E&M Ring Cycle Sequence sequence(s) Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)
Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).
  1. Find the electrostatic potential at a point \(\vec{r}\) on the \(x\)-axis at a distance \(x\) from the center of the quadrupole.

  2. A series of charges arranged in this way is called a linear quadrupole. Why?

  • Found in: AIMS Maxwell, Static Fields, Problem-Solving course(s)

assignment_ind Small White Board Question

10 min.

Electrostatic Potential Due to a Point Charge
  • Found in: Static Fields course(s) Found in: Warm-Up, E&M Ring Cycle Sequence sequence(s)
Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). Different groups are assigned different arrangements of charges and different regions of space to consider: either on the axis of the charges or in the plane equidistant from the two charges, for either small or large values of the relevant geometric variable. Each group is asked to find a power series expansion for the electrostatic potential, valid in their group's assigned region of space. The whole class wrap-up discussion then compares and contrasts the results and discuss the symmetries of the two cases.
A charged spiral in the \(x,y\)-plane has 6 turns from the origin out to a maximum radius \(R\) , with \(\phi\) increasing proportionally to the distance from the center of the spiral. Charge is distributed on the spiral so that the charge density increases linearly as the radial distance from the center increases. At the center of the spiral the linear charge density is \(0~\frac{\textrm{C}}{\textrm{m}}\). At the end of the spiral, the linear charge density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the spiral?
  • Found in: Static Fields, Problem-Solving course(s)

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge

Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge

Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

None

Scattering

Consider a very light particle of mass \(\mu\) scattering from a very heavy, stationary particle of mass \(M\). The force between the two particles is a repulsive Coulomb force \(\frac{k}{r^2}\). The impact parameter \(b\) in a scattering problem is defined to be the distance which would be the closest approach if there were no interaction (See Figure). The initial velocity (far from the scattering event) of the mass \(\mu\) is \(\vec v_0\). Answer the following questions about this situation in terms of \(k\), \(M\), \(\mu\), \(\vec v_0\), and \(b\). (It is not necessarily wise to answer these questions in order.)

  1. What is the initial angular momentum of the system?
  2. What is the initial total energy of the system?
  3. What is the distance of closest approach \(r_{\rm{min}}\) with the interaction?
  4. Sketch the effective potential.
  5. What is the angular momentum at \(r_{\rm{min}}\)?
  6. What is the total energy of the system at \(r_{\rm{min}}\)?
  7. What is the radial component of the velocity at \(r_{\rm{min}}\)?
  8. What is the tangential component of the velocity at \(r_{\rm{min}}\)?
  9. What is the value of the effective potential at \(r_{\rm{min}}\)?
  10. For what values of the initial total energy are there bound orbits?
  11. Using your results above, write a short essay describing this type of scattering problem, at a level appropriate to share with another Paradigm student.

  • Found in: Central Forces course(s)

Consider the finite line with a uniform charge density from class.

  1. Write an integral expression for the electric field at any point in space due to the finite line. In addition to your usual physics sense-making, you must include a clearly labeled figure and discuss what happens to the direction of the unit vectors as you integrate.Consider the finite line with a uniform charge density from class.
  2. Perform the integral to find the \(z\)-component of the electric field. In addition to your usual physics sense-making, you must compare your result to the gradient of the electric potential we found in class. (If you want to challenge yourself, do the \(s\)-component as well!)

Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).

  1. Find the electrostatic potential at a point \(\vec{r}\) in the \(xy\)-plane at a distance \(s\) from the center of the quadrupole. The formula for the electrostatic potential \(V\) at a point \(\vec{r}\) due to a charge \(Q\) at the point \(\vec{r}'\) is given by: \[ V(\vec{r})=\frac{1}{4\pi\epsilon_0} \frac{Q}{\vert \vec{r}-\vec{r}'\vert} \] Electrostatic potentials satisfy the superposition principle.

  2. Assume \(s\gg D\). Find the first two non-zero terms of a power series expansion to the electrostatic potential you found in the first part of this problem.

  3. A series of charges arranged in this way is called a linear quadrupole. Why?

  • Found in: Power Series Sequence (E&M) sequence(s) Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

group Small Group Activity

30 min.

Magnetic Field Due to a Spinning Ring of Charge

Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.