assignment Homework

##### Vectors
vector geometry Static Fields 2022 (3 years)

Let \begin{align} \boldsymbol{\vec a} &= \boldsymbol{\hat x}-3\boldsymbol{\hat y}-\boldsymbol{\hat z}\\ \boldsymbol{\vec b} &= \boldsymbol{\hat x}+\boldsymbol{\hat y}+2\boldsymbol{\hat z}\\ {\boldsymbol{\vec c}} &= -2\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z}\\ \boldsymbol{\vec d} &= -\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z} \end{align}

Which pairs (if any) of these vectors

1. Are perpendicular?
2. Are parallel?
3. Have an angle less than $\pi/2$ between them?
4. Have an angle of more than $\pi/2$ between them?

assignment_ind Small White Board Question

10 min.

##### Dot Product Review
Static Fields 2022 (5 years)

This small whiteboard question (SWBQ) serves as a quick review of the dot product. It is also an opportunity to help students see the advantages of knowing many different representations of and facts about a physical concept.

group Small Group Activity

30 min.

##### Vector Integrals (Contour Map)

group Small Group Activity

30 min.

##### Right Angles on Spacetime Diagrams
Theoretical Mechanics 2021 (2 years)

Students take the inner product of vectors that lie on the spacetime axis to show that they are orthogonal. To do the inner product, students much use the Minkowski metric.

assignment Homework

##### Tetrahedron
Static Fields 2022 (4 years)

Using a dot product, find the angle between any two line segments that join the center of a regular tetrahedron to its vertices. Hint: Think of the vertices of the tetrahedron as sitting at the vertices of a cube (at coordinates (0,0,0), (1,1,0), (1,0,1) and (0,1,1)---you may need to build a model and play with it to see how this works!)

accessibility_new Kinesthetic

30 min.

##### The Distance Formula (Star Trek)
Static Fields 2022 (4 years)

Ring Cycle Sequence

A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. $\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}$

group Small Group Activity

30 min.

##### Scalar Surface and Volume Elements
Static Fields 2022 (4 years)

Integration Sequence

Students use known algebraic expressions for length elements $d\ell$ to determine all simple scalar area $dA$ and volume elements $d\tau$ in cylindrical and spherical coordinates.

This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.

group Small Group Activity

120 min.

##### Box Sliding Down Frictionless Wedge
Theoretical Mechanics 2021 (2 years)

Students solve for the equations of motion of a box sliding down (frictionlessly) a wedge, which itself slides on a horizontal surface, in order to answer the question "how much time does it take for the box to slide a distance $d$ down the wedge?". This activities highlights finding kinetic energies when the coordinate system is not orthonormal and checking special cases, functional behavior, and dimensions.

group Small Group Activity

30 min.

##### Vector Surface and Volume Elements
Static Fields 2022 (3 years)

Integration Sequence

Students use known algebraic expressions for vector line elements $d\vec{r}$ to determine all simple vector area $d\vec{A}$ and volume elements $d\tau$ in cylindrical and spherical coordinates.

This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.

keyboard Computational Activity

120 min.

##### Sinusoidal basis set
Computational Physics Lab II 2022 (2 years)

Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.

group Small Group Activity

5 min.

##### Acting Out Flux
Static Fields 2022 (3 years)

Students hold rulers and meter sticks to represent a vector field. The instructor holds a hula hoop to represent a small area element. Students are asked to describe the flux of the vector field through the area element.

group Small Group Activity

30 min.

##### Flux through a Cone
Static Fields 2022 (3 years)

Integration Sequence

Students calculate the flux from the vector field $\vec{F} = C\, z\, \hat{z}$ through a right cone of height $H$ and radius $R$ .

assignment Homework

##### Directional Derivative
Static Fields 2022 (4 years)

You are on a hike. The altitude nearby is described by the function $f(x, y)= k x^{2}y$, where $k=20 \mathrm{\frac{m}{km^3}}$ is a constant, $x$ and $y$ are east and north coordinates, respectively, with units of kilometers. You're standing at the spot $(3~\mathrm{km},2~\mathrm{km})$ and there is a cottage located at $(1~\mathrm{km}, 2~\mathrm{km})$. You drop your water bottle and the water spills out.

1. Plot the function $f(x, y)$ and also its level curves in your favorite plotting software. Include images of these graphs. Special note: If you use a computer program written by someone else, you must reference that appropriately.
2. In which direction in space does the water flow?
3. At the spot you're standing, what is the slope of the ground in the direction of the cottage?
4. Does your result to part (c) make sense from the graph?

assignment Homework

##### Flux through a Paraboloid
Static Fields 2022 (4 years)

Find the upward pointing flux of the electric field $\vec E =E_0\, z\, \hat z$ through the part of the surface $z=-3 s^2 +12$ (cylindrical coordinates) that sits above the $(x, y)$--plane.

keyboard Computational Activity

120 min.

##### Kinetic energy
Computational Physics Lab II 2022 (2 years)

Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.

keyboard Computational Activity

120 min.

##### Position operator
Computational Physics Lab II 2022 (2 years)

Students find matrix elements of the position operator $\hat x$ in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.

group Small Group Activity

30 min.

##### Visualization of Divergence
Vector Calculus II 2022 (7 years) Students predict from graphs of simple 2-d vector fields whether the divergence is positive, negative, or zero in various regions of the domain using the definition of the divergence of a vector field at a point: The divergence of a vector field at a point is flux per unit volume through an infinitesimal box surrounding that point. Optionally, students can use a Mathematica notebook to verify their predictions.

group Small Group Activity

30 min.

##### Changes in Internal Energy (Remote)

Students consider the change in internal energy during three different processes involving a container of water vapor on a stove. Using the 1st Law of Thermodynamics, students reason about how the internal energy would change and then compare this prediction with data from NIST presented as a contour plot.

group Small Group Activity

5 min.

##### Heat and Temperature of Water Vapor (Remote)

In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.

assignment Homework

##### Distance Formula in Curvilinear Coordinates

Ring Cycle Sequence

Static Fields 2022 (4 years)

The distance $\left\vert\vec r -\vec r\,{}'\right\vert$ between the point $\vec r$ and the point $\vec r'$ is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

1. Find the distance $\left\vert\vec r -\vec r\,{}'\right\vert$ between the point $\vec r$ and the point $\vec r'$ in rectangular coordinates.
2. Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
3. Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
4. Now assume that $\vec r\,{}'$ and $\vec r$ are in the $x$-$y$ plane. Simplify the previous two formulas.