Consider a thin charged rod of length \(L\) standing along the \(z\)-axis with the bottom end on the \(xy\)-plane. The charge density \(\lambda\) is constant. Find the electric field at the point \((0,0,2L)\).
  • Found in: AIMS Maxwell, Static Fields course(s)

group Small Group Activity

30 min.

Work By An Electric Field (Contour Map)
Students will estimate the work done by a given electric field. They will connect the work done to the height of a plastic surface graph of the electric potential.

(Quick) Purpose: Recognize the definition of a central force. Build experience about which common physical situations represent central forces and which don't.

Which of the following forces can be central forces? which cannot? If the force CAN be a central force, explain the circumstances that would allow it to be a central force.

  1. The force on a test mass \(m\) in a gravitational field \(\vec{g~}\), i.e. \(m\vec g\)
  2. The force on a test charge \(q\) in an electric field \(\vec E\), i.e. \(q\vec E\)
  3. The force on a test charge \(q\) moving at velocity \(\vec{v~}\) in a magnetic field \(\vec B\), i.e. \(q\vec v \times \vec B\)

  • Found in: Central Forces course(s)

Instructions for 2022: You will need to complete this assignment in a 15 minute appointment on Zoom or in person with one of the members of the teaching team between 1/21 and 10 pm on 1/26. Here is a link to a sign-up page.

You are required to watch a sample video for how to make symmetry arguments here. As demonstrated in the video you should bring with you to the meeting a cylinder, an observer, and a vector.

Use good symmetry arguments to find the possible direction for the electric field due to a charged wire. Also, use good symmetry arguments to find the possible functional dependence of the electric field due to a charged wire. Rather than writing this up to turn in, you should find a member of the teaching team and make the arguments to them verbally.

  • Found in: Static Fields, AIMS Maxwell course(s)
  1. Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation}

  • Found in: Gradient Sequence sequence(s) Found in: Static Fields, AIMS Maxwell course(s)
  1. Find the electric field around a finite, uniformly charged, straight rod, at a point a distance \(s\) straight out from the midpoint, starting from Coulomb's Law.
  2. Find the electric field around an infinite, uniformly charged, straight rod, starting from the result for a finite rod.
  • Found in: Static Fields, AIMS Maxwell course(s)

group Small Group Activity

30 min.

Charged Sphere
Students use a plastic surface representing the potential due to a charged sphere to explore the electrostatic potential, equipotential lines, and the relationship between potential and electric field.

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge

Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Electric Field of Two Charged Plates
  • Students need to understand that the surface represents the electric potential in the center of a parallel plate capacitor. Try doing the activity Electric Potential of Two Charged Plates before this activity.
  • Students should know that
    1. objects with like charge repel and opposite charge attract,
    2. object tend to move toward lower energy configurations
    3. The potential energy of a charged particle is related to its charge: \(U=qV\)
    4. The force on a charged particle is related to its charge: \(\vec{F}=q\vec{E}\)

computer Computer Simulation

30 min.

Visualizing Flux through a Cube
Students explore the effects of putting a point charge at various places inside, outside, and on the surface of a cubical Gaussian surface. The Mathematica worksheet or Sage activity shows the electric field due to the charge, then plots the the flux integrand on the top surface of the box, calculates the flux through the top of the box, and the value of the flux through the whole cube.
  • Found in: Static Fields, AIMS Maxwell, Surfaces/Bridge Workshop course(s)

For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.

  • Found in: Static Fields, AIMS Maxwell course(s)

Consider the finite line with a uniform charge density from class.

  1. Write an integral expression for the electric field at any point in space due to the finite line. In addition to your usual physics sense-making, you must include a clearly labeled figure and discuss what happens to the direction of the unit vectors as you integrate.Consider the finite line with a uniform charge density from class.
  2. Perform the integral to find the \(z\)-component of the electric field. In addition to your usual physics sense-making, you must compare your result to the gradient of the electric potential we found in class. (If you want to challenge yourself, do the \(s\)-component as well!)

The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}

This problem explores the consequences of the divergence theorem for this shell.

  1. Using the given description of the gravitational field, find the divergence of the gravitational field everywhere in space. You will need to divide this question up into three parts: \(r<a\), \(a<r<b\), and \(r>b\).
  2. Briefly discuss the physical meaning of the divergence in this particular example.
  3. For this gravitational field, verify the divergence theorem on a sphere, concentric with the shell, with radius \(Q\), where \(a<Q<b\). ("Verify" the divergence theorem means calculate the integrals from both sides of the divergence theorem and show that they give the same answer.)
  4. Briefly discuss how this example would change if you were discussing the electric field of a uniformly charged spherical shell.

  • Found in: Static Fields, AIMS Maxwell course(s)

keyboard Computational Activity

120 min.

Electrostatic potential and Electric Field of a square of charge
Students write python programs to compute the potential due to a square of surface charge, and then to visualize the result. This activity can be used to introduce students to the process of integrating numerically.
Consider a thin charged rod of length \(L\) standing along the \(z\)-axis with the bottom end on the \(x,y\)-plane. The charge density \(\lambda_0\) is constant. Find the total flux of the electric field through a closed cubical surface with sides of length \(3L\) centered at the origin.
  • Found in: AIMS Maxwell, Static Fields course(s)

group Small Group Activity

30 min.

Number of Paths
Student discuss how many paths can be found on a map of the vector fields \(\vec{F}\) for which the integral \(\int \vec{F}\cdot d\vec{r}\) is positive, negative, or zero. \(\vec{F}\) is conservative. They do a similar activity for the vector field \(\vec{G}\) which is not conservative.

keyboard Computational Activity

120 min.

Electric field for a waffle cone of charge
Students integrate numerically to find the electric field due to a cone of surface charge, and then visualize the result. This integral can be done in either spherical or cylindrical coordinates, giving students a chance to reason about which coordinate system would be more convenient.

The electrostatic potential due to a point charge at the origin is given by: \begin{equation} V=\frac{1}{4\pi\epsilon_0} \frac{q}{r} \end{equation}

  1. Find the electric field due to a point charge at the origin as a gradient in rectangular coordinates.
  2. Find the electric field due to a point charge at the origin as a gradient in spherical coordinates.
  3. Find the electric field due to a point charge at the origin as a gradient in cylindrical coordinates.

  • Found in: Gradient Sequence sequence(s) Found in: Static Fields, AIMS Maxwell course(s)
Consider the electric field \begin{equation} \vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases} \end{equation}
  1. Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
  2. Find a formula for the charge density that creates this electric field.
  3. Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.
  • Found in: AIMS Maxwell, Static Fields course(s)

group Small Group Activity

30 min.

A glass of water
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.