assignment_ind Small White Board Question

10 min.

Electrostatic Potential Due to a Point Charge
  • Found in: Static Fields course(s) Found in: Warm-Up, E&M Ring Cycle Sequence sequence(s)

computer Mathematica Activity

30 min.

Using Technology to Visualize Potentials
Begin by prompting the students to brainstorm different ways to represent a three dimensional scalar field on a 2-D surface (like their paper or a whiteboard). The students use a pre-made Sage code or a Mathematica worksheet to visualize the electrostatic potential of several distributions of charges. The computer algebra systems demonstrate several different ways of plotting the potential.

keyboard Computational Activity

120 min.

Electrostatic potential of spherical shell
Students solve numerically for the potential due to a spherical shell of charge. Although this potential is straightforward to compute using Gauss's Law, it serves as a nice example for numerically integrating in spherical coordinates because the correct answer is easy to recognize.
Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).
  1. Find the electrostatic potential at a point \(\vec{r}\) on the \(x\)-axis at a distance \(x\) from the center of the quadrupole.

  2. A series of charges arranged in this way is called a linear quadrupole. Why?

  • Found in: AIMS Maxwell, Static Fields course(s)

keyboard Computational Activity

120 min.

Electrostatic potential of four point charges
Students write python programs to compute and visualize the potential due to four point charges. For students with minimal programming ability and no python experience, this activity can be a good introduction to writing code in python using numpy and matplotlib.
Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). This activity can be paired with activity 29 to find the limiting cases of the potential on the axes of symmetry.

keyboard Computational Activity

120 min.

Electrostatic potential and Electric Field of a square of charge
Students write python programs to compute the potential due to a square of surface charge, and then to visualize the result. This activity can be used to introduce students to the process of integrating numerically.

In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:

  1. Find the value of the electrostatic potential energy of a system consisting of a hydrogen nucleus and an electron separated by the Bohr radius. Find the value of the gravitational potential energy of the same two particles at the same radius. Use the same system of units in both cases. Compare and the contrast the two answers.
  2. Find the value of the electrostatic potential due to the nucleus of a hydrogen atom at the Bohr radius. Find the gravitational potential due to the nucleus at the same radius. Use the same system of units in both cases. Compare and contrast the two answers.
  3. Briefly discuss at least one other fundamental difference between electromagnetic and gravitational systems. Hint: Why are we bound to the earth gravitationally, but not electromagnetically?

  • Found in: Static Fields, AIMS Maxwell course(s)

The concentration of potassium \(\text{K}^+\) ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of \(10^4\) the concentration of \(\text{K}^+\) ions in the pond water in which the cell is growing. The chemical potential of the \(\text{K}^+\) ions is higher in the sap because their concentration \(n\) is higher there. Estimate the difference in chemical potential at \(300\text{K}\) and show that it is equivalent to a voltage of \(0.24\text{V}\) across the cell wall. Take \(\mu\) as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?

David adds
You might wonder why it is even remotely plausible to consider the ions in solution as an ideal gas. The key idea here is that the ideal gas entropy incorporates the entropy due to position dependence, and thus due to concentration. Since concentration is what differs between the cell and the pond, the ideal gas entropy describes this pretty effectively. In contrast to the concentration dependence, the temperature-dependence of the ideal gas chemical potential will not be so great.

  • Found in: Thermal and Statistical Physics course(s)

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge

Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge

Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). Different groups are assigned different arrangements of charges and different regions of space to consider: either on the axis of the charges or in the plane equidistant from the two charges, for either small or large values of the relevant geometric variable. Each group is asked to find a power series expansion for the electrostatic potential, valid in their group's assigned region of space. The whole class wrap-up discussion then compares and contrasts the results and discuss the symmetries of the two cases.
  1. Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation}

  • Found in: Gradient Sequence sequence(s) Found in: Static Fields, AIMS Maxwell course(s)

Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).

  1. Find the electrostatic potential at a point \(\vec{r}\) in the \(xy\)-plane at a distance \(s\) from the center of the quadrupole. The formula for the electrostatic potential \(V\) at a point \(\vec{r}\) due to a charge \(Q\) at the point \(\vec{r'}\) is given by: \[ V(\vec{r})=\frac{1}{4\pi\epsilon_0} \frac{Q}{\vert \vec{r}-\vec{r'}\vert} \] Electrostatic potentials satisfy the superposition principle.

  2. Assume \(s\gg D\). Find the first two non-zero terms of a power series expansion to the electrostatic potential you found in the first part of this problem.

  3. A series of charges arranged in this way is called a linear quadrupole. Why?

  • Found in: Power Series Sequence (E&M) sequence(s) Found in: Static Fields, AIMS Maxwell course(s)

group Small Group Activity

120 min.

Equipotential Surfaces
Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.

Consider the fields at a point \(\vec{r}\) due to a point charge located at \(\vec{r}'\).

  1. Write down an expression for the electrostatic potential \(V(\vec{r})\) at a point \(\vec{r}\) due to a point charge located at \(\vec{r}'\). (There is nothing to calculate here.)
  2. Write down an expression for the electric field \(\vec{E}(\vec{r})\) at a point \(\vec{r}\) due to a point charge located at \(\vec{r}'\). (There is nothing to calculate here.)
  3. Working in rectangular coordinates, compute the gradient of \(V\).
  4. Write several sentences comparing your answers to the last two questions.

  • Found in: Gradient Sequence sequence(s)

accessibility_new Kinesthetic

10 min.

Acting Out the Gradient
Students are shown a topographic map of an oval hill and imagine that the classroom is on the hill. They are asked to point in the direction of the gradient vector appropriate to the point on the hill where they are "standing".

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Charged Sphere
Students use a plastic surface representing the potential due to a charged sphere to explore the electrostatic potential, equipotential lines, and the relationship between potential and electric field.

group Small Group Activity

30 min.

A glass of water
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.