group Small Group Activity

30 min.

Energy and Angular Momentum for a Quantum Particle on a Ring

central forces quantum mechanics eigenstates eigenvalues quantum measurements angular momentum energy hermitian operators probability superposition representations notations degeneracy

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.

group Small Group Activity

30 min.

Time Evolution of a Spin-1/2 System
Quantum Fundamentals 2023 (3 years)

quantum mechanics spin precession time evolution

In this small group activity, students solve for the time dependence of two quantum spin 1/2 particles under the influence of a Hamiltonian. Students determine, given a Hamiltonian, which states are stationary and under what circumstances measurement probabilities do change with time.

assignment Homework

Unknowns Spin-1/2 Brief
Quantum Fundamentals 2023 (3 years) With the Spins simulation set for a spin 1/2 system, measure the probabilities of all the possible spin components for each of the unknown initial states \(\left|{\psi_3}\right\rangle \) and \(\left|{\psi_4}\right\rangle \).
  1. Use your measured probabilities to find each of the unknown states as a linear superposition of the \(S_z\)-basis states \(\left|{+}\right\rangle \) and \(\left|{-}\right\rangle \).
  2. Articulate a Process: Write a set of general instructions that would allow another student in next year's class to find an unknown state from measured probabilities.
  3. Compare Theory with Experiment: Design an experiment that will allow you to test whether your prediction for each of the unknown states is correct. Describe your experiment here, clearly but succinctly, as if you were writing it up for a paper. Do the experiment and discuss your results.
  4. Make a Conceptual Connection: In general, can you determine a quantum state with spin-component probability measurements in only two spin-component-directions? Why or why not?

face Lecture

30 min.

Review of Thermal Physics
Thermal and Statistical Physics 2020

thermodynamics statistical mechanics

These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.

group Small Group Activity

30 min.

\(|\pm\rangle\) Forms an Orthonormal Basis
Quantum Fundamentals 2023 (3 years)

Cartesian Basis $S_z$ basis completeness normalization orthogonality basis

Completeness Relations

Student explore the properties of an orthonormal basis using the Cartesian and \(S_z\) bases as examples.

face Lecture

10 min.

Systems of Particles Lecture Notes
Central Forces 2022 (2 years)

assignment Homework

Divergence through a Prism
Static Fields 2023 (6 years)

Consider the vector field \(\vec F=(x+2)\hat{x} +(z+2)\hat{z}\).

  1. Calculate the divergence of \(\vec F\).
  2. In which direction does the vector field \(\vec F\) point on the plane \(z=x\)? What is the value of \(\vec F\cdot \hat n\) on this plane where \(\hat n\) is the unit normal to the plane?
  3. Verify the divergence theorem for this vector field where the volume involved is drawn below. (“Verify” means calculate both sides of the divergence theorem, separately, for this example and show that they are the same.)

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring Part 1
Theoretical Mechanics (6 years)

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

group Small Group Activity

60 min.

Raising and Lowering Operators for Spin
Central Forces 2023 (2 years)

assignment Homework

Hockey
Central Forces 2023 (3 years)

(Synthesis Problem: Brings together several different concepts from this unit.) Use effective potential diagrams for other than \(1/r^2\) forces.

Consider the frictionless motion of a hockey puck of mass \(m\) on a perfectly circular bowl-shaped ice rink with radius \(a\). The central region of the bowl (\(r < 0.8a\)) is perfectly flat and the sides of the ice bowl smoothly rise to a height \(h\) at \(r = a\).

  1. Draw a sketch of the potential energy for this system. Set the zero of potential energy at the top of the sides of the bowl.
  2. Situation 1: the puck is initially moving radially outward from the exact center of the rink. What minimum velocity does the puck need to escape the rink?
  3. Situation 2: a stationary puck, at a distance \(\frac{a}{2}\) from the center of the rink, is hit in such a way that it's initial velocity \(\vec v_0\) is perpendicular to its position vector as measured from the center of the rink. What is the total energy of the puck immediately after it is struck?
  4. In situation 2, what is the angular momentum of the puck immediately after it is struck?
  5. Draw a sketch of the effective potential for situation 2.
  6. In situation 2, for what minimum value of \(\vec v_0\) does the puck just escape the rink?

assignment Homework

Heat shields
Stefan-Boltzmann blackbody radiation Thermal and Statistical Physics 2020 A black (nonreflective) sheet of metal at high temperature \(T_h\) is parallel to a cold black sheet of metal at temperature \(T_c\). Each sheet has an area \(A\) which is much greater than the distance between them. The sheets are in vacuum, so energy can only be transferred by radiation.
  1. Solve for the net power transferred between the two sheets.

  2. A third black metal sheet is inserted between the other two and is allowed to come to a steady state temperature \(T_m\). Find the temperature of the middle sheet, and solve for the new net power transferred between the hot and cold sheets. This is the principle of the heat shield, and is part of how the James Web telescope shield works.
  3. Optional: Find the power through an \(N\)-layer sandwich.

face Lecture

5 min.

Energy and Entropy review
Thermal and Statistical Physics 2020 (3 years)

thermodynamics statistical mechanics

This very quick lecture reviews the content taught in Energy and Entropy, and is the first content in Thermal and Statistical Physics.

assignment Homework

Gravitational Field and Mass
Static Fields 2023 (5 years)

The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}

This problem explores the consequences of the divergence theorem for this shell.

  1. Using the given description of the gravitational field, find the divergence of the gravitational field everywhere in space. You will need to divide this question up into three parts: \(r<a\), \(a<r<b\), and \(r>b\).
  2. Briefly discuss the physical meaning of the divergence in this particular example.
  3. For this gravitational field, verify the divergence theorem on a sphere, concentric with the shell, with radius \(Q\), where \(a<Q<b\). ("Verify" the divergence theorem means calculate the integrals from both sides of the divergence theorem and show that they give the same answer.)
  4. Briefly discuss how this example would change if you were discussing the electric field of a uniformly charged spherical shell.

face Lecture

120 min.

Gibbs entropy approach
Thermal and Statistical Physics 2020

Gibbs entropy information theory probability statistical mechanics

These lecture notes for the first week of Thermal and Statistical Physics include a couple of small group activities in which students work with the Gibbs formulation of the entropy.

face Lecture

30 min.

Energy and heat and entropy
Energy and Entropy 2021 (2 years)

latent heat heat capacity internal energy entropy

This short lecture introduces the ideas required for Ice Calorimetry Lab or Microwave oven Ice Calorimetry Lab.

assignment Homework

Ring Function
Central Forces 2023 (3 years) Consider the normalized wavefunction \(\Phi\left(\phi\right)\) for a quantum mechanical particle of mass \(\mu\) constrained to move on a circle of radius \(r_0\), given by: \begin{equation} \Phi\left(\phi\right)= \frac{N}{2+\cos(3\phi)} \end{equation} where \(N\) is the normalization constant.
  1. Find \(N\).

  2. Plot this wave function.
  3. Plot the probability density.
  4. Find the probability that if you measured \(L_z\) you would get \(3\hbar\).
  5. What is the expectation value of \(L_z\) in this state?

assignment Homework

Paramagnet (multiple solutions)
Energy and Entropy 2021 (2 years) We have the following equations of state for the total magnetization \(M\), and the entropy \(S\) of a paramagnetic system: \begin{align} M&=N\mu\, \frac{e^{\frac{\mu B}{k_B T}} - e^{-\frac{\mu B}{k_B T}}} {e^{\frac{\mu B}{k_B T}} + e^{-\frac{\mu B}{k_B T}}}\\ S&=Nk_B\left\{\ln 2 + \ln \left(e^{\frac{\mu B}{k_B T}}+e^{-\frac{\mu B}{k_B T}}\right) +\frac{\mu B}{k_B T} \frac{e^{\frac{\mu B}{k_B T}} - e^{-\frac{\mu B}{k_B T}}} {e^{\frac{\mu B}{k_B T}} + e^{-\frac{\mu B}{k_B T}}} \right\} \end{align}
  1. List variables in their proper positions in the middle columns of the charts below.

  2. Solve for the magnetic susceptibility, which is defined as: \[\chi_B=\left(\frac{\partial M}{\partial B}\right)_T \]

  3. Using both the differentials (zapping with d) and chain rule diagram methods, find a chain rule for:

    \[\left(\frac{\partial M}{\partial B}\right)_S \]

  4. Evaluate your chain rule. Sense-making: Why does this come out to zero?

assignment Homework

Ideal gas calculations
Ideal gas Entropy Sackur-Tetrode Thermal and Statistical Physics 2020

Consider one mole of an ideal monatomic gas at 300K and 1 atm. First, let the gas expand isothermally and reversibly to twice the initial volume; second, let this be followed by an isentropic expansion from twice to four times the original volume.

  1. How much heat (in joules) is added to the gas in each of these two processes?

  2. What is the temperature at the end of the second process?

  3. Suppose the first process is replaced by an irreversible expansion into a vacuum, to a total volume twice the initial volume. What is the increase of entropy in the irreversible expansion, in J/K?

group Small Group Activity

30 min.

Paramagnet (multiple solutions)
  • Students evaluate two given partial derivatives from a system of equations.
  • Students learn/review generalized Leibniz notation.
  • Students may find it helpful to use a chain rule diagram.

face Lecture

120 min.

Ideal Gas
Thermal and Statistical Physics 2020

ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.