face Lecture

30 min.

Equipartition theorem
Contemporary Challenges 2022 (4 years)

equipartition heat capacity

This lecture introduces the equipartition theorem.

group Small Group Activity

30 min.

Heat capacity of N2
Contemporary Challenges 2022 (4 years)

equipartition quantum energy levels

Students sketch the temperature-dependent heat capacity of molecular nitrogen. They apply the equipartition theorem and compute the temperatures at which degrees of freedom “freeze out.”

assignment Homework

Potential energy of gas in gravitational field
Potential energy Heat capacity Thermal and Statistical Physics 2020 Consider a column of atoms each of mass \(M\) at temperature \(T\) in a uniform gravitational field \(g\). Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom \(h=0\) of the column. Integrate from \(h=0\) to \(h=\infty\). You may assume the gas is ideal.

group Small Group Activity

30 min.

Applying the equipartition theorem
Contemporary Challenges 2022 (4 years)

equipartition theorem

Students count the quadratic degrees of freedom of a few toy molecules to predict their internal energy at temperature \(T\).

assignment Homework

Free energy of a harmonic oscillator
Helmholtz free energy harmonic oscillator Thermal and Statistical Physics 2020

A one-dimensional harmonic oscillator has an infinite series of equally spaced energy states, with \(\varepsilon_n = n\hbar\omega\), where \(n\) is an integer \(\ge 0\), and \(\omega\) is the classical frequency of the oscillator. We have chosen the zero of energy at the state \(n=0\) which we can get away with here, but is not actually the zero of energy! To find the true energy we would have to add a \(\frac12\hbar\omega\) for each oscillator.

  1. Show that for a harmonic oscillator the free energy is \begin{equation} F = k_BT\log\left(1 - e^{-\frac{\hbar\omega}{k_BT}}\right) \end{equation} Note that at high temperatures such that \(k_BT\gg\hbar\omega\) we may expand the argument of the logarithm to obtain \(F\approx k_BT\log\left(\frac{\hbar\omega}{kT}\right)\).

  2. From the free energy above, show that the entropy is \begin{equation} \frac{S}{k_B} = \frac{\frac{\hbar\omega}{kT}}{e^{\frac{\hbar\omega}{kT}}-1} - \log\left(1-e^{-\frac{\hbar\omega}{kT}}\right) \end{equation}

    Entropy of a simple harmonic oscillator
    Heat capacity of a simple harmonic oscillator
    This entropy is shown in the nearby figure, as well as the heat capacity.

group Small Group Activity

30 min.

Heat and Temperature of Water Vapor

Thermo Heat Capacity Partial Derivatives

In this introduction to heat capacity, students determine a derivative that indicates how much the internal energy changes as the temperature changes when volume is held constant.

face Lecture

120 min.

Thermal radiation and Planck distribution
Thermal and Statistical Physics 2020

Planck distribution blackbody radiation photon statistical mechanics

These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.