assignment Homework

Entropy, energy, and enthalpy of van der Waals gas
Van der Waals gas Enthalpy Entropy Thermal and Statistical Physics 2020

In this entire problem, keep results to first order in the van der Waals correction terms \(a\) and $b.

  1. Show that the entropy of the van der Waals gas is \begin{align} S &= Nk\left\{\ln\left(\frac{n_Q(V-Nb)}{N}\right)+\frac52\right\} \end{align}

  2. Show that the energy is \begin{align} U &= \frac32 NkT - \frac{N^2a}{V} \end{align}

  3. Show that the enthalpy \(H\equiv U+pV\) is \begin{align} H(T,V) &= \frac52NkT + \frac{N^2bkT}{V} - 2\frac{N^2a}{V} \\ H(T,p) &= \frac52NkT + Nbp - \frac{2Nap}{kT} \end{align}

Effects of High Altitude by Randall Munroe, at xkcd.

assignment Homework

Electric Field and Charge
divergence charge density Maxwell's equations electric field Static Fields 2023 (4 years) Consider the electric field \begin{equation} \vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases} \end{equation}
  1. Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
  2. Find a formula for the charge density that creates this electric field.
  3. Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.

assignment Homework

Center of Mass for Two Uncoupled Particles
Central Forces 2023 (3 years)

(Straightforward) Purpose: Discover that a system of two masses can be a central force system even when they are not interacting at all. Practice with center-of-mass coordinates.

Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways,

  • with theorems about the center of mass motion,
  • without theorems about the center of mass motion.
  • Write a short description comparing the two solutions.

group Small Group Activity

60 min.

Electrostatic Potential Due to a Pair of Charges (with Series)
Static Fields 2023 (6 years)

electrostatic potential multipole charge symmetry scalar field superposition coulomb's Law

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). Different groups are assigned different arrangements of charges and different regions of space to consider: either on the axis of the charges or in the plane equidistant from the two charges, for either small or large values of the relevant geometric variable. Each group is asked to find a power series expansion for the electrostatic potential, valid in their group's assigned region of space. The whole class wrap-up discussion then compares and contrasts the results and discuss the symmetries of the two cases.

group Small Group Activity

120 min.

Equipotential Surfaces

E&M Quadrupole Scalar Fields

Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.

group Small Group Activity

60 min.

Ice Calorimetry Lab

heat entropy water ice

The students will set up a Styrofoam cup with heating element and a thermometer in it. They will measure the temperature as a function of time, and thus the energy transferred from the power supply, from which they compute changes in entropy.

assignment Homework

Heat pump
Carnot efficiency Work Entropy Heat pump Thermal and Statistical Physics 2020
  1. Show that for a reversible heat pump the energy required per unit of heat delivered inside the building is given by the Carnot efficiency: \begin{align} \frac{W}{Q_H} &= \eta_C = \frac{T_H-T_C}{T_H} \end{align} What happens if the heat pump is not reversible?

  2. Assume that the electricity consumed by a reversible heat pump must itself be generated by a Carnot engine operating between the even hotter temperature \(T_{HH}\) and the cold (outdoors) temperature \(T_C\). What is the ratio \(\frac{Q_{HH}}{Q_H}\) of the heat consumed at \(T_{HH}\) (i.e. fuel burned) to the heat delivered at \(T_H\) (in the house we want to heat)? Give numerical values for \(T_{HH}=600\text{K}\); \(T_{H}=300\text{K}\); \(T_{C}=270\text{K}\).

  3. Draw an energy-entropy flow diagram for the combination heat engine-heat pump, similar to Figures 8.1, 8.2 and 8.4 in the text (or the equivalent but sloppier) figures in the course notes. However, in this case we will involve no external work at all, only energy and entropy flows at three temperatures, since the work done is all generated from heat.

assignment Homework

Bottle in a Bottle 2
heat entropy ideal gas Energy and Entropy 2021 (2 years)

Consider the bottle in a bottle problem in a previous problem set, summarized here.

A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.

The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).

  1. How many molecules of gas does the large bottle contain? What is the final temperature of the gas?

  2. Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).

  3. Discuss your results.

assignment Homework

Symmetry Arguments for Gauss's Law
Static Fields 2023 (5 years)

Instructions for 2022: You will need to complete this assignment in a 15 minute appointment on Zoom or in person with one of the members of the teaching team between 1/21 and 10 pm on 1/26. Here is a link to a sign-up page.

You are required to watch a sample video for how to make symmetry arguments here. As demonstrated in the video you should bring with you to the meeting a cylinder, an observer, and a vector.

Use good symmetry arguments to find the possible direction for the electric field due to a charged wire. Also, use good symmetry arguments to find the possible functional dependence of the electric field due to a charged wire. Rather than writing this up to turn in, you should find a member of the teaching team and make the arguments to them verbally.

assignment Homework

Gravitational Field and Mass
Static Fields 2023 (5 years)

The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}

This problem explores the consequences of the divergence theorem for this shell.

  1. Using the given description of the gravitational field, find the divergence of the gravitational field everywhere in space. You will need to divide this question up into three parts: \(r<a\), \(a<r<b\), and \(r>b\).
  2. Briefly discuss the physical meaning of the divergence in this particular example.
  3. For this gravitational field, verify the divergence theorem on a sphere, concentric with the shell, with radius \(Q\), where \(a<Q<b\). ("Verify" the divergence theorem means calculate the integrals from both sides of the divergence theorem and show that they give the same answer.)
  4. Briefly discuss how this example would change if you were discussing the electric field of a uniformly charged spherical shell.

group Small Group Activity

30 min.

A glass of water
Energy and Entropy 2021 (2 years)

thermodynamics intensive extensive temperature volume energy entropy

Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

assignment Homework

Entropy of mixing
Entropy Equilibrium Sackur-Tetrode Thermal and Statistical Physics 2020

Suppose that a system of \(N\) atoms of type \(A\) is placed in diffusive contact with a system of \(N\) atoms of type \(B\) at the same temperature and volume.

  1. Show that after diffusive equilibrium is reached the total entropy is increased by \(2Nk\ln 2\). The entropy increase \(2Nk\ln 2\) is known as the entropy of mixing.

  2. If the atoms are identical (\(A=B\)), show that there is no increase in entropy when diffusive contact is established. The difference has been called the Gibbs paradox.

  3. Since the Helmholtz free energy is lower for the mixed \(AB\) than for the separated \(A\) and \(B\), it should be possible to extract work from the mixing process. Construct a process that could extract work as the two gasses are mixed at fixed temperature. You will probably need to use walls that are permeable to one gas but not the other.


This course has not yet covered work, but it was covered in Energy and Entropy, so you may need to stretch your memory to finish part (c).

face Lecture

120 min.

Thermal radiation and Planck distribution
Thermal and Statistical Physics 2020

Planck distribution blackbody radiation photon statistical mechanics

These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.