assignment Homework

ISW Position Measurement
time evoluation infinite square well Quantum Fundamentals 2023

A particle in an infinite square well potential has an initial state vector \[\left|{\Psi(0)}\right\rangle = A\big(\left|{\phi_1}\right\rangle -\left|{\phi_2}\right\rangle +i\left|{\phi_3}\right\rangle \big)\]

where \(|\phi_n\rangle\) are the energy eigenstates. You have previously found \(\left|{\Psi(t)}\right\rangle \) for this state.

  1. Use a computer to graph the wave function \(\Psi(x,t)\) and probability density \(\rho(x,t)\). Choose a few interesting values of \(t\) to include in your submission.

  2. Use a computer to calculate the probability of measuring the particle to be near the middle of the well (within 1% on either side) as a function of time. Include both your symbolic result and a graph in your submission.

  3. Choose another location in the well, different from the location above. Use a computer to calculate the probability of measuring the particle to be near your chosen location (within 1% on either side) as a function of time. Include both your symbolic result and a graph in your submission.

  4. Are there any locations in the well where the probability is independent of time? Explain how you determined your answer.

  5. The time dependence for a wave function like this is complicated. Write a lengthy description in words about the major features of this wave function and its probability density, how they change in time, and why they change the way they do. Comment on any interesting features you noticed that you have not already discussed in the questions above and describe any additional things you learned from the process of solving this problem.

group Small Group Activity

120 min.

Representations of the Infinite Square Well
Quantum Fundamentals 2023 (3 years)


assignment Homework

Quantum Fundamentals 2023 (3 years)

Consider the following wave functions (over all space - not the infinite square well!):

\(\psi_a(x) = A e^{-x^2/3}\)

\(\psi_b(x) = B \frac{1}{x^2+2} \)

\(\psi_c(x) = C \;\mbox{sech}\left(\frac{x}{5}\right)\) (“sech” is the hyperbolic secant function.)

In each case:

  1. normalize the wave function,
  2. plot the wave function using Mathematica or other computer plotting tool (be sure to include the code you used and label your plots/axes appropriately),
  3. find the probability that the particle is measured to be in the range \(0<x<1\).

assignment Homework

Charge on a Spiral
Static Fields 2023 (3 years) A charged spiral in the \(x,y\)-plane has 6 turns from the origin out to a maximum radius \(R\) , with \(\phi\) increasing proportionally to the distance from the center of the spiral. Charge is distributed on the spiral so that the charge density increases linearly as the radial distance from the center increases. At the center of the spiral the linear charge density is \(0~\frac{\textrm{C}}{\textrm{m}}\). At the end of the spiral, the linear charge density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the spiral?

group Small Group Activity

60 min.

Gravitational Potential Energy

Mechanics Gravitational Potential Energy Zero of Potential Introductory Physics

Students examine a plastic “surface” graph of the gravitational potential energy of an Earth-satellite system to explore the properties of gravitational potential energy for a spherically symmetric system.

keyboard Computational Activity

120 min.

Mean position
Computational Physics Lab II 2023 (2 years)

probability density particle in a box wave function quantum mechanics

Students compute probabilities and averages given a probability density in one dimension. This activity serves as a soft introduction to the particle in a box, introducing all the concepts that are needed.

group Small Group Activity

30 min.

Operators & Functions
Quantum Fundamentals 2023 (3 years) Students are asked to:
  • Test to see if one of the given functions is an eigenfunction of the given operator
  • See if they can write the functions that are found not to be eigenfunctions as a linear combination of eigenfunctions.

face Lecture

120 min.

Boltzmann probabilities and Helmholtz
Thermal and Statistical Physics 2020

ideal gas entropy canonical ensemble Boltzmann probability Helmholtz free energy statistical mechanics

These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.