assignment Homework

##### Inner Product Properties
None 2023 The properties that an inner product on an abstract vector space must satisfy can be found in: Definition and Properties of an Inner Product. Definition: The inner product for any two vectors in the vector space of periodic functions with a given period (let's pick $2\pi$ for simplicity) is given by: $\left\langle {f}\middle|{g}\right\rangle =\int_0^{2\pi} f^*(x)\, g(x)\, dx$
1. Show that the first property of inner products $\left\langle {f}\middle|{g}\right\rangle =\left\langle {g}\middle|{f}\right\rangle ^*$ is satisfied for this definition.
2. Show that the second property of inner products $\left\langle {f}\right|\Big(\lambda\left|{g}\right\rangle + \mu \left|{h}\right\rangle \Big) = \lambda\left\langle {f}\middle|{g}\right\rangle +\mu\left\langle {f}\middle|{h}\right\rangle$ is satisfied for this definition.

group Small Group Activity

30 min.

##### Right Angles on Spacetime Diagrams
Theoretical Mechanics (4 years)

Students take the inner product of vectors that lie on the spacetime axis to show that they are orthogonal. To do the inner product, students much use the Minkowski metric.

assignment Homework

##### Completeness Relation Change of Basis
change of basis spin half completeness relation dirac notation

Completeness Relations

Quantum Fundamentals 2023 (3 years)
1. Given the polar basis kets written as a superposition of Cartesian kets \begin{eqnarray*} \left|{\hat{s}}\right\rangle &=& \cos\phi \left|{\hat{x}}\right\rangle + \sin\phi \left|{\hat{y}}\right\rangle \\ \left|{\hat{\phi}}\right\rangle &=& -\sin\phi \left|{\hat{x}}\right\rangle + \cos\phi \left|{\hat{y}}\right\rangle \end{eqnarray*}

Find the following quantities: $\left\langle {\hat{x}}\middle|{\hat{s}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{{\hat{s}}}\right\rangle ,\quad \left\langle {\hat{x}}\middle|{\hat{\phi}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{\hat{\phi}}\right\rangle$

2. Given a vector written in the polar basis $\left|{\vec{v}}\right\rangle = a\left|{\hat{s}}\right\rangle + b\left|{\hat{\phi}}\right\rangle$ where $a$ and $b$ are known. Find coefficients $c$ and $d$ such that $\left|{\vec{v}}\right\rangle = c\left|{\hat{x}}\right\rangle + d\left|{\hat{y}}\right\rangle$ Do this by using the completeness relation: $\left|{\hat{x}}\right\rangle \left\langle {\hat{x}}\right| + \left|{\hat{y}}\right\rangle \left\langle {\hat{y}}\right| = 1$
3. Using a completeness relation, change the basis of the spin-1/2 state $\left|{\Psi}\right\rangle = g\left|{+}\right\rangle + h\left|{-}\right\rangle$ into the $S_y$ basis. In otherwords, find $j$ and $k$ such that $\left|{\Psi}\right\rangle = j\left|{+}\right\rangle _y + k\left|{-}\right\rangle _y$

keyboard Computational Activity

120 min.

##### Sinusoidal basis set
Computational Physics Lab II 2023 (2 years)

Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.

assignment Homework

##### Normalization of Quantum States
Central Forces 2023 (3 years) Show that if a linear combination of ring energy eigenstates is normalized, then the coefficients must satisfy $$\sum_{m=-\infty}^{\infty} \vert c_m\vert^2=1$$

group Small Group Activity

30 min.

##### Superposition States for a Particle on a Ring

Quantum Ring Sequence

Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.

face Lecture

5 min.

##### Unit Learning Outcomes: Quantum Mechanics on a Ring
Central Forces 2023

assignment Homework

##### Working with Representations on the Ring
Central Forces 2023 (3 years)

The following are 3 different representations for the $\textbf{same}$ state on a quantum ring for $r_0=1$ $$\left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle$$ $$\left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix}$$ $$\Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right)$$

1. With each representation of the state given above, explicitly calculate the probability that $L_z=-1\hbar$. Then, calculate all other non-zero probabilities for values of $L_z$ with a method/representation of your choice.
2. Explain how you could be sure you calculated all of the non-zero probabilities.
3. If you measured the $z$-component of angular momentum to be $3\hbar$, what would the state of the particle be immediately after the measurement is made?
4. With each representation of the state given above, explicitly calculate the probability that $E=\frac{9}{2}\frac{\hbar^2}{I}$. Then, calculate all other non-zero probabilities for values of $E$ with a method of your choice.
5. If you measured the energy of the state to be $\frac{9}{2}\frac{\hbar^2}{I}$, what would the state of the particle be immediately after the measurement is made?

accessibility_new Kinesthetic

10 min.

##### Spin 1/2 with Arms
Quantum Fundamentals 2023 (2 years)

Arms Sequence for Complex Numbers and Quantum States

Students, working in pairs, use their left arms to represent each component in a two-state quantum spin 1/2 system. Reinforces the idea that quantum states are complex valued vectors. Students make connections between Dirac, matrix, and Arms representation.

assignment Homework

##### Bottle in a Bottle 2
heat entropy ideal gas Energy and Entropy 2021 (2 years)

Consider the bottle in a bottle problem in a previous problem set, summarized here.

A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.

The volume of the small bottle is 0.001 m23 and the volume of the big bottle is 0.01 m3. The initial state of the gas in the small bottle was $p=106$ Pa and its temperature $T=300$ K. Approximate the helium gas as an ideal gas of equations of state $pV=Nk_BT$ and $U=\frac32 Nk_BT$.

1. How many molecules of gas does the large bottle contain? What is the final temperature of the gas?

2. Compute the integral $\int \frac{{\mathit{\unicode{273}}} Q}{T}$ and the change of entropy $\Delta S$ between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).

face Lecture

30 min.

##### Time Evolution Refresher (Mini-Lecture)
Central Forces 2023 (3 years)

Quantum Ring Sequence

The instructor gives a brief lecture about time dependence of energy eigenstates (e.g. McIntyre, 3.1). Notes for the students are attached.

group Small Group Activity

30 min.

##### Outer Product of a Vector on Itself
Quantum Fundamentals 2023 (2 years)

Completeness Relations

Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).

assignment Homework

##### Matrix Elements and Completeness Relations

Completeness Relations

Quantum Fundamentals 2023 (3 years)

Writing an operator in matrix notation in its own basis is easy: it is diagonal with the eigenvalues on the diagonal.

What if I want to calculate the matrix elements using a different basis??

The eigenvalue equation tells me what happens when an operator acts on its own eigenstate. For example: $\hat{S}_y\left|{\pm}\right\rangle _y=\pm\frac{\hbar}{2}\left|{\pm}\right\rangle _y$

In Dirac bra-ket notation, to know what an operator does to a ket, I needs to write the ket in the basis that is the eigenstates of the operator (in order to use the eigenvalue equation.)

One way to do this to stick completeness relationships into the braket: \begin{eqnarray*} \left\langle {+}\right|\hat{S_y}\left|{+}\right\rangle = \left\langle {+}\right|(I)\hat{S_y}(I)\left|{+}\right\rangle \end{eqnarray*}

where $I$ is the identity operator: $I=\color{blue}{\left|{+}\right\rangle _{yy}\left\langle {+}\right|}\;+\;\color{blue}{\left|{-}\right\rangle _{yy}\left\langle {-}\right|}$. This effectively rewrite the $\left|{+}\right\rangle$ in the $\left|{\pm}\right\rangle _y$ basis.

Find the top row matrix elements of the operator $\hat{S}_y$ in the $S_z$ basis by inserting completeness relations into the brakets. (The answer is already on the Spins Reference Sheet, but I want you do demonstrate the calculation.)

keyboard Computational Activity

120 min.

##### Position operator
Computational Physics Lab II 2022

Students find matrix elements of the position operator $\hat x$ in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.

assignment Homework

##### Electric Field and Charge
divergence charge density Maxwell's equations electric field Static Fields 2023 (4 years) Consider the electric field $$\vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases}$$
1. Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
2. Find a formula for the charge density that creates this electric field.
3. Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.

keyboard Computational Activity

120 min.

##### Kinetic energy
Computational Physics Lab II 2022

Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.

group Small Group Activity

30 min.

##### Time Dependence for a Quantum Particle on a Ring Part 1
Theoretical Mechanics (6 years)

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.