title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Students use their arms to act out two spin-1/2 quantum states and their inner product.

Small Group Activity

10 min.

Dot Product Review
This small whiteboard question (SWBQ) serves as a quick review of the dot product. It is also an opportunity to help students see the advantages of knowing many different representations of and facts about a physical concept.
  • dot product inner product
    Found in: Static Fields, AIMS Maxwell, Vector Calculus I, Surfaces/Bridge Workshop, Problem-Solving, None course(s)

Small Group Activity

30 min.

Representations for Finding Components
In this small group activity, students draw components of a vector in Cartesian and polar bases. Students then write the components of the vector in these bases as both dot products with unit vectors and as bra/kets with basis bras.

Computational Activity

120 min.

Sinusoidal basis set
Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.

Problem

5 min.

Dirac Practice
For this problem, use the vectors \(|a\rangle = 4 |1\rangle - 3 |2\rangle\) and \(|b\rangle = -i |1\rangle + |2\rangle\).
  1. Find \(\langle a | b \rangle\) and \(\langle b | a \rangle\). Discuss how these two inner products are related to each other.
  2. For \(\hat{Q}\doteq \begin{pmatrix} 2 & i \\ -i & -2 \end{pmatrix} \), calculate \(\langle1|\hat{Q}|2\rangle\), \(\langle2|\hat{Q}|1\rangle\), \(\langle a|\hat{Q}| b \rangle\) and \(\langle b|\hat{Q}|a \rangle\).
  3. What kind of mathematical object is \(|a\rangle\langle b|\)? What is the result if you multiply a ket (for example, \(| a\rangle\) or \(|1\rangle\)) by this expression? What if you multiply this expression by a bra?
The properties that an inner product on an abstract vector space must satisfy can be found in: Definition and Properties of an Inner Product. Definition: The inner product for any two vectors in the vector space of periodic functions with a given period (let's pick \(2\pi\) for simplicity) is given by: \[\left\langle {f}\middle|{g}\right\rangle =\int_0^{2\pi} f^*(x)\, g(x)\, dx\]
  1. Show that the first property of inner products \[\left\langle {f}\middle|{g}\right\rangle =\left\langle {g}\middle|{f}\right\rangle ^*\] is satisfied for this definition.
  2. Show that the second property of inner products \[\left\langle {f}\right|\Big(\lambda\left|{g}\right\rangle + \mu \left|{h}\right\rangle \Big) = \lambda\left\langle {f}\middle|{g}\right\rangle +\mu\left\langle {f}\middle|{h}\right\rangle \] is satisfied for this definition.
  • Found in: None, Oscillations and Waves course(s)

Small Group Activity

10 min.

Cross Product
This small group activity is designed to help students visualize the cross product. Students work in small groups to determine the area of a triangle in space. The whole class wrap-up discussion emphasizes the geometric interpretation of the cross product.

Small Group Activity

30 min.

Outer Product of a Vector on Itself
Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).

Kinesthetic

30 min.

The Distance Formula (Star Trek)
A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]

Small Group Activity

10 min.

Angular Momentum in Polar Coordinates
Students learn how to express Angular Momentum as a vector quantity in polar coordinates, and then in Cylindrical and Spherical Coordinates

Problem

Orthogonal
Consider the three quantum states: \[\left\vert \psi_1\right\rangle = \frac{1}{\sqrt{3}}\left\vert +\right\rangle+ i\frac{\sqrt{2}}{\sqrt{3}} \left\vert -\right\rangle\] \[\left\vert \psi_2\right\rangle = \frac{1}{\sqrt{5}}\left\vert +\right\rangle- \frac{2}{\sqrt{5}} \left\vert -\right\rangle\] \[\left\vert \psi_3\right\rangle = \frac{1}{\sqrt{2}}\left\vert +\right\rangle+ i\frac{e^{\frac{i\pi}{4}}}{\sqrt{2}} \left\vert -\right\rangle\]
  1. For each of the \(\vert \psi_i\rangle\) above, find the normalized vector \(\vert \phi_i\rangle\) that is orthogonal to it.
  2. Calculate the inner products \(\langle \psi_i\vert \psi_j\rangle\) for \(i\) and \(j=1\), \(2\), \(3\).

Problem

5 min.

Orthogonal Brief

Consider the quantum state: \[\left\vert \psi\right\rangle = \frac{1}{\sqrt{3}}\left\vert +\right\rangle+ i\frac{\sqrt{2}}{\sqrt{3}} \left\vert -\right\rangle\]

Find the normalized vector \(\vert \phi\rangle\) that is orthogonal to it.

Small Group Activity

30 min.

Right Angles on Spacetime Diagrams
Students take the inner product of vectors that lie on the spacetime axis to show that they are orthogonal. To do the inner product, students much use the Minkowski metric.
Students practice using inner products to find the components of the cartesian basis vectors in the polar basis and vice versa. Then, students use a completeness relation to change bases or cartesian/polar bases and for different spin bases.