Search

 

Results: linear charge density

accessibility_new Kinesthetic

10 min.

Acting Out Charge Densities

density charge density mass density linear density uniform idealization

Ring Cycle Sequence

Integration Sequence

Students, pretending they are point charges, move around the room acting out various prompts from the instructor regarding charge densities, including linear \(\lambda\), surface \(\sigma\), and volume \(\rho\) charge densities, both uniform and non-uniform. The instructor demonstrates what it means to measure these quantities. In a remote setting, we have students manipulate 10 coins to model the prompts in this activity and the we demonstrate the answers with coins under a doc cam.

accessibility_new Kinesthetic

10 min.

Acting Out Current Density

Steady current current density magnetic field idealization

Ring Cycle Sequence

Integration Sequence

Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

assignment Homework

Helix

A helix with 17 turns has height \(H\) and radius \(R\). Charge is distributed on the helix so that the charge density increases like (i.e. proportional to) the square of the distance up the helix. At the bottom of the helix the linear charge density is \(0~\frac{\textrm{C}}{\textrm{m}}\). At the top of the helix, the linear charge density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the helix?

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge

electrostatic potential charge linear charge density taylor series power series scalar field superposition symmetry distance formula

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge

coulomb's law electric field charge ring symmetry integral power series superposition

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Magnetic Vector Potential Due to a Spinning Charged Ring

compare and contrast mathematica magnetic vector potential magnetic fields vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Electric Potential of Two Charged Plates
Students examine a plastic "surface" graph of the electric potential due to two changes plates (near the center of the plates) and explore the properties of the electric potential.

group Small Group Activity

30 min.

Magnetic Field Due to a Spinning Ring of Charge

magnetic fields current Biot-Savart law vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.