accessibility_new Kinesthetic

10 min.

Acting Out Charge Densities
Static Fields 2022 (4 years)

density charge density mass density linear density uniform idealization

Ring Cycle Sequence

Integration Sequence

Students, pretending they are point charges, move around the room acting out various prompts from the instructor regarding charge densities, including linear \(\lambda\), surface \(\sigma\), and volume \(\rho\) charge densities, both uniform and non-uniform. The instructor demonstrates what it means to measure these quantities. In a remote setting, we have students manipulate 10 coins to model the prompts in this activity and the we demonstrate the answers with coins under a doc cam.

accessibility_new Kinesthetic

10 min.

Acting Out Current Density
Static Fields 2022 (4 years)

Steady current current density magnetic field idealization

Ring Cycle Sequence

Integration Sequence

Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2021

central forces quantum mechanics angular momentum probability density eigenstates time evolution superposition mathematica

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

assignment Homework

Helix

Integration Sequence

Static Fields 2022 (4 years)

A helix with 17 turns has height \(H\) and radius \(R\). Charge is distributed on the helix so that the charge density increases like (i.e. proportional to) the square of the distance up the helix. At the bottom of the helix the linear charge density is \(0~\frac{\textrm{C}}{\textrm{m}}\). At the top of the helix, the linear charge density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the helix?

assignment Homework

Derivatives from Data (NIST)
Energy and Entropy 2021 (2 years) Use the NIST web site “Thermophysical Properties of Fluid Systems” to answer the following questions. This site is an excellent resource for finding experimentally measured properties of fluids.
  1. Find the partial derivatives \[\left(\frac{\partial {S}}{\partial {T}}\right)_{p}\] \[\left(\frac{\partial {S}}{\partial {T}}\right)_{V}\] where \(p\) is the pressure, \(V\) is the volume, \(S\) is the entropy, and \(T\) is the temperature. Please find these derivatives for one gram of methanol at one atmosphere of pressure and at room temperature.
  2. Why does it take only two variables to define the state?
  3. Why are the derivatives above different?
  4. What do the words isobaric, isothermal, and isochoric mean?

group Small Group Activity

30 min.

Electric Field Due to a Ring of Charge
Static Fields 2022 (6 years)

coulomb's law electric field charge ring symmetry integral power series superposition

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge
Static Fields 2022 (6 years)

electrostatic potential charge linear charge density taylor series power series scalar field superposition symmetry distance formula

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

A glass of water
Energy and Entropy 2021 (2 years)

thermodynamics intensive extensive temperature volume energy entropy

Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

group Small Group Activity

30 min.

Magnetic Vector Potential Due to a Spinning Charged Ring
Static Fields 2022 (4 years)

compare and contrast mathematica magnetic vector potential magnetic fields vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

30 min.

Electric Potential of Two Charged Plates
Students examine a plastic "surface" graph of the electric potential due to two changes plates (near the center of the plates) and explore the properties of the electric potential.

group Small Group Activity

30 min.

Time Dependence for a Quantum Particle on a Ring
Central Forces 2021

central forces quantum mechanics eigenstates eigenvalues angular momentum time dependence hermitian operators probability degeneracy quantum measurements

Quantum Ring Sequence

Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.

face Lecture

5 min.

Energy and Entropy review
Thermal and Statistical Physics 2020 (3 years)

thermodynamics statistical mechanics

This very quick lecture reviews the content taught in Energy and Entropy, and is the first content in Thermal and Statistical Physics.

group Small Group Activity

30 min.

Magnetic Field Due to a Spinning Ring of Charge
Static Fields 2022 (5 years)

magnetic fields current Biot-Savart law vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

face Lecture

120 min.

Ideal Gas
Thermal and Statistical Physics 2020

ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.