Search

 

Results: magnetic fields

group Small Group Activity

30 min.

Magnetic Field Due to a Spinning Ring of Charge

magnetic fields current Biot-Savart law vector field symmetry

Power Series Sequence (E&M)

Ring Cycle Sequence

Students work in groups of three to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

accessibility_new Kinesthetic

10 min.

Acting Out Current Density

Steady current current density magnetic field idealization

Ring Cycle Sequence

Integration Sequence

Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

assignment Homework

Magnetic Field and Current
Consider the magnetic field \[ \vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases} \]
  1. Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
  2. Find a formula for the current density that creates this magnetic field.
  3. Interpret your formula for the current density, i.e. explain briefly in words where the current is.
« Previous | Next »