assignment_ind Small White Board Question

30 min.

Magnetic Moment & Stern-Gerlach Experiments
Students consider the relation (1) between the angular momentum and magnetic moment for a current loop and (2) the force on a magnetic moment in an inhomogeneous magnetic field. Students make a (classical) prediction of the outcome of a Stern-Gerlach experiment.
Consider the magnetic field \[ \vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases} \]
  1. Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
  2. Find a formula for the current density that creates this magnetic field.
  3. Interpret your formula for the current density, i.e. explain briefly in words where the current is.
  • Found in: AIMS Maxwell, Static Fields, Problem-Solving course(s)

Consider a paramagnet, which is a material with \(n\) spins per unit volume each of which may each be either “up” or “down”. The spins have energy \(\pm mB\) where \(m\) is the magnetic dipole moment of a single spin, and there is no interaction between spins. The magnetization \(M\) is defined as the total magnetic moment divided by the total volume. Hint: each individual spin may be treated as a two-state system, which you have already worked with above.

Plot of magnetization vs. B field

  1. Find the Helmholtz free energy of a paramagnetic system (assume \(N\) total spins) and show that \(\frac{F}{NkT}\) is a function of only the ratio \(x\equiv \frac{mB}{kT}\).

  2. Use the canonical ensemble (i.e. partition function and probabilities) to find an exact expression for the total magentization \(M\) (which is the total dipole moment per unit volume) and the susceptibility \begin{align} \chi\equiv\left(\frac{\partial M}{\partial B}\right)_T \end{align} as a function of temperature and magnetic field for the model system of magnetic moments in a magnetic field. The result for the magnetization is \begin{align} M=nm\tanh\left(\frac{mB}{kT}\right) \end{align} where \(n\) is the number of spins per unit volume. The figure shows what this magnetization looks like.

  3. Show that the susceptibility is \(\chi=\frac{nm^2}{kT}\) in the limit \(mB\ll kT\).

  • Found in: Thermal and Statistical Physics course(s)

accessibility_new Kinesthetic

10 min.

Acting Out Current Density
Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.

(Quick) Purpose: Recognize the definition of a central force. Build experience about which common physical situations represent central forces and which don't.

Which of the following forces can be central forces? which cannot? If the force CAN be a central force, explain the circumstances that would allow it to be a central force.

  1. The force on a test mass \(m\) in a gravitational field \(\vec{g~}\), i.e. \(m\vec g\)
  2. The force on a test charge \(q\) in an electric field \(\vec E\), i.e. \(q\vec E\)
  3. The force on a test charge \(q\) moving at velocity \(\vec{v~}\) in a magnetic field \(\vec B\), i.e. \(q\vec v \times \vec B\)

  • Found in: Central Forces course(s)

group Small Group Activity

30 min.

A glass of water
Students generate a list of properties a glass of water might have. The class then discusses and categorizes those properties.

group Small Group Activity

30 min.

Magnetic Field Due to a Spinning Ring of Charge

Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

Find the equilibrium value at temperature \(T\) of the fractional magnetization \begin{equation} \frac{\mu_{tot}}{Nm} \equiv \frac{2\langle s\rangle}{N} \end{equation} of a system of \(N\) spins each of magnetic moment \(m\) in a magnetic field \(B\). The spin excess is \(2s\). The energy of this system is given by \begin{align} U &= -\mu_{tot}B \end{align} where \(\mu_{tot}\) is the total magnetization. Take the entropy as the logarithm of the multiplicity \(g(N,s)\) as given in (1.35 in the text): \begin{equation} S(s) \approx k_B\log g(N,0) - k_B\frac{2s^2}{N} \end{equation} for \(|s|\ll N\), where \(s\) is the spin excess, which is related to the magnetization by \(\mu_{tot} = 2sm\). Hint: Show that in this approximation \begin{equation} S(U) = S_0 - k_B\frac{U^2}{2m^2B^2N}, \end{equation} with \(S_0=k_B\log g(N,0)\). Further, show that \(\frac1{kT} = -\frac{U}{m^2B^2N}\), where \(U\) denotes \(\langle U\rangle\), the thermal average energy.
  • Found in: Thermal and Statistical Physics course(s)
Two electrons are placed in a magnetic field in the \(z\)-direction. The initial state of the first electron is \(\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ i\\ \end{pmatrix}\) and the initial state of the second electron is \(\frac{1}{2}\begin{pmatrix} \sqrt{3}\\ 1\\ \end{pmatrix}\).
  1. Find the probabilty of measuring each particle to have spin-up in the \(x\)-, \(y\)-, and \(z\)-directions at \(t = 0\).
  2. Find the probabilty of measuring each particle to have spin-up in the \(x\)-, \(y\)-, and \(z\)-directions at some later time \(t\).
  3. Calculate the expectation values for \(S_x\), \(S_y\), and \(S_z\) for each particle as functions of time.
  4. Are there any times when all the probabilities you have calculated are the same as they were at \(t = 0\)?
  • Found in: Quantum Fundamentals course(s)

Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

A spin-3/2 particle initially is in the state \(|\psi(0)\rangle = |\frac{1}{2}\rangle\). This particle is placed in an external magnetic field so that the Hamiltonian is proportional to the \(\hat{S}_x\) operator, \(\hat{H} = \alpha \hat{S}_x \doteq \frac{\alpha\hbar}{2}\begin{pmatrix} 0 & \sqrt{3} & 0 & 0\\ \sqrt{3} & 0 & 2 & 0\\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}\)
  1. Find the energy eigenvalues and energy eigenstates for the system.
  2. Find \(|\psi(t)\rangle\).
  3. List the outcomes of all possible measurements of \(S_x\) and find their probabilities. Explicitly identify any probabilities that depend on time.
  4. List the outcomes of all possible measurements of \(S_z\) and find their probabilities. Explicitly identify any probabilities that depend on time.
  • Found in: Quantum Fundamentals course(s)

group Small Group Activity

30 min.

Number of Paths
Student discuss how many paths can be found on a map of the vector fields \(\vec{F}\) for which the integral \(\int \vec{F}\cdot d\vec{r}\) is positive, negative, or zero. \(\vec{F}\) is conservative. They do a similar activity for the vector field \(\vec{G}\) which is not conservative.

group Small Group Activity

30 min.

Scalar Surface and Volume Elements

Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.

  • Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

group Small Group Activity

30 min.

Visualization of Curl
Students predict from graphs of simple 2-d vector fields whether the curl is positive, negative, or zero in various regions of the domain using the definition of the curl of a vector field at a point as the maximum circulation per unit area through an infinitesimal box surrounding that point. Optionally, students can use computer algebra to verify their predictions.
  • Found in: Static Fields, AIMS Maxwell, Vector Calculus II, Surfaces/Bridge Workshop, Problem-Solving course(s)

Nuclei of a particular isotope species contained in a crystal have spin \(I=1\), and thus, \(m = \{+1,0,-1\}\). The interaction between the nuclear quadrupole moment and the gradient of the crystalline electric field produces a situation where the nucleus has the same energy, \(E=\varepsilon\), in the state \(m=+1\) and the state \(m=-1\), compared with an energy \(E=0\) in the state \(m=0\), i.e. each nucleus can be in one of 3 states, two of which have energy \(E=\varepsilon\) and one has energy \(E=0\).

  1. Find the Helmholtz free energy \(F = U-TS\) for a crystal containing \(N\) nuclei which do not interact with each other.

  2. Find an expression for the entropy as a function of temperature for this system. (Hint: use results of part a.)

  3. Indicate what your results predict for the entropy at the extremes of very high temperature and very low temperature.

  • Found in: Energy and Entropy course(s)

group Small Group Activity

30 min.

Divergence and Curl
  • Found in: Vector Calculus II course(s)

group Small Group Activity

60 min.

The Wire
Students compute a vector line integral, then investigate whether this integral is path independent.

group Small Group Activity

30 min.

Stokes' Theorem
Students compute both sides of Stokes' theorem.
  • Found in: Vector Calculus II, Surfaces/Bridge Workshop course(s)

face Lecture

120 min.

Entropy and Temperature
These lecture notes for the second week of Thermal and Statistical Physics involve relating entropy and temperature in the microcanonical ensemble, using a paramagnet as an example. These notes include a few small group activities.

face Lecture

120 min.

Phase transformations
These lecture notes from the ninth week of Thermal and Statistical Physics cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.