Students work in groups of three to use the superposition principle
\[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\]
to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable.
Add an extra half hour or more to the time estimate for the optional extension.

Students work in groups of three to use the Biot-Savart law
\[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\]
to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.

In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable.
Add an extra half hour or more to the time estimate for the optional extension.

Student discuss how many paths can be found on a map of the vector fields \(\vec{F}\) for which the integral
\(\int \vec{F}\cdot d\vec{r}\) is positive, negative, or zero. \(\vec{F}\) is conservative.
They do a similar activity for the vector field \(\vec{G}\) which is not conservative.