None

Phase
  1. For each of the following complex numbers \(z\), find \(z^2\), \(\vert z\vert^2\), and rewrite \(z\) in exponential form, i.e. as a magnitude times a complex exponential phase:
    • \(z_1=i\),

    • \(z_2=2+2i\),
    • \(z_3=3-4i\).
  2. In quantum mechanics, it turns out that the overall phase for a state does not have any physical significance. Therefore, you will need to become quick at rearranging the phase of various states. For each of the vectors listed below, rewrite the vector as an overall complex phase times a new vector whose first component is real and positive. \[\left|D\right\rangle\doteq \begin{pmatrix} 7e^{i\frac{\pi}{6}}\\ 3e^{i\frac{\pi}{2}}\\ -1\\ \end{pmatrix}\\ \left|E\right\rangle\doteq \begin{pmatrix} i\\ 4\\ \end{pmatrix}\\ \left|F\right\rangle\doteq \begin{pmatrix} 2+2i\\ 3-4i\\ \end{pmatrix} \]
  • Found in: Quantum Fundamentals course(s)

group Small Group Activity

30 min.

Conic Sections
Students are asked to explore the parameters that affect orbit shape using the supplied Maple worksheet or Mathematica notebook.
  • Found in: Central Forces course(s)
Consider the three quantum states: \[\left\vert \psi_1\right\rangle = \frac{1}{\sqrt{3}}\left\vert +\right\rangle+ i\frac{\sqrt{2}}{\sqrt{3}} \left\vert -\right\rangle\] \[\left\vert \psi_2\right\rangle = \frac{1}{\sqrt{5}}\left\vert +\right\rangle- \frac{2}{\sqrt{5}} \left\vert -\right\rangle\] \[\left\vert \psi_3\right\rangle = \frac{1}{\sqrt{2}}\left\vert +\right\rangle+ i\frac{e^{\frac{i\pi}{4}}}{\sqrt{2}} \left\vert -\right\rangle\] For each of the \(\vert \psi_i\rangle\) above, find the normalized vector \(\vert \phi_i\rangle\) that is orthogonal to it.
  • Found in: Quantum Fundamentals course(s)

group Small Group Activity

30 min.

Covariation in Thermal Systems
Students consider how changing the volume of a system changes the internal energy of the system. Students use plastic graph models to explore these functions.

accessibility_new Kinesthetic

10 min.

Using Arms to Visualize Complex Numbers (MathBits)
Students move their left arm in a circle to trace out the complex plane (Argand diagram). They then explore the rectangular and exponential representations of complex numbers by using their left arm to show given complex numbers on the complex plane. Finally they enact multiplication of complex numbers in exponential form and complex conjugation.

face Lecture

30 min.

Energy and heat and entropy
This short lecture introduces the ideas required for Ice Calorimetry Lab or Microwave oven Ice Calorimetry Lab.

group Small Group Activity

30 min.

Quantifying Change
In this activity, students will explore how to calculate a derivative from measured data. Students should have prior exposure to differential calculus. At the start of the activity, orient the students to the contour plot - it's busy.

The general solution of the homogeneous differential equation

\[\ddot{x}-\dot{x}-6 x=0\]

is

\[x(t)=A\, e^{3t}+ B\, e^{-2t}\]

where \(A\) and \(B\) are arbitrary constants that would be determined by the initial conditions of the problem.

  1. Find a particular solution of the inhomogeneous differential equation \(\ddot{x}-\dot{x}-6 x=-25\sin(4 t)\).

  2. Find the general solution of \(\ddot{x}-\dot{x}-6 x=-25\sin(4 t)\).

  3. Some terms in your general solution have an undetermined coefficients, while some coefficients are fully determined. Explain what is different about these two cases.

  4. Find a particular solution of \(\ddot{x}-\dot{x}-6 x=12 e^{-3 t}\)

  5. Find the general solution of \(\ddot{x}-\dot{x}-6 x=12 e^{-3 t}-25\sin(4 t)\)

    How is this general solution related to the particular solutions you found in the previous parts of this question?

    Can you add these particular solutions together with arbitrary coefficients to get a new particular solution?

  6. Sense-making: Check your answer; Explicitly plug in your final answer in part (e) and check that it satisfies the differential equation.

  • Found in: None, Oscillations and Waves course(s)
Consider the arbitrary Pauli matrix \(\sigma_n=\hat n\cdot\vec \sigma\) where \(\hat n\) is the unit vector pointing in an arbitrary direction.
  1. Find the eigenvalues and normalized eigenvectors for \(\sigma_n\). The answer is: \[ \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\phi/2}\\{} \sin\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\phi/2}\\{} \cos\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \] It is not sufficient to show that this answer is correct by plugging into the eigenvalue equation. Rather, you should do all the steps of finding the eigenvalues and eigenvectors as if you don't know the answer. Hint: \(\sin\theta=\sqrt{1-\cos^2\theta}\).
  2. Show that the eigenvectors from part (a) above are orthogonal.
  3. Simplify your results from part (a) above by considering the three separate special cases: \(\hat n=\hat\imath\), \(\hat n=\hat\jmath\), \(\hat n=\hat k\). In this way, find the eigenvectors and eigenvalues of \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\).
  • Found in: Quantum Fundamentals course(s)
  1. Let \[|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \qquad \rm{and} \qquad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\] Show that \(\left|{\alpha}\right\rangle \) and \(\left|{\beta}\right\rangle \) are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)
  2. Consider the matrix \[C\doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \] Show that the vectors \(|\alpha\rangle\) and \(|\beta\rangle\) are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)
  3. A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix \(E\) that corresponds to \(C\) expanded in the basis of its eigenvectors, i.e. calculate \(\langle\alpha|C|\alpha\rangle\), \(\langle\alpha|C|\beta\rangle\), \(\langle\beta|C|\alpha\rangle\) and \(\langle\beta|C|\beta\rangle\) and arrange them into a sensible matrix \(E\). Explain why you arranged the matrix elements in the order that you did.
  4. Find the determinants of \(C\) and \(E\). How do these determinants compare to the eigenvalues of these matrices?
  • Found in: Quantum Fundamentals course(s)

face Lecture

5 min.

Energy and Entropy review
This very quick lecture reviews the content taught in Energy and Entropy, and is the first content in Thermal and Statistical Physics.

face Lecture

30 min.

Review of Thermal Physics
These are notes, essentially the equation sheet, from the final review session for Thermal and Statistical Physics.

None

Orthogonal
Consider the three quantum states: \[\left\vert \psi_1\right\rangle = \frac{1}{\sqrt{3}}\left\vert +\right\rangle+ i\frac{\sqrt{2}}{\sqrt{3}} \left\vert -\right\rangle\] \[\left\vert \psi_2\right\rangle = \frac{1}{\sqrt{5}}\left\vert +\right\rangle- \frac{2}{\sqrt{5}} \left\vert -\right\rangle\] \[\left\vert \psi_3\right\rangle = \frac{1}{\sqrt{2}}\left\vert +\right\rangle+ i\frac{e^{\frac{i\pi}{4}}}{\sqrt{2}} \left\vert -\right\rangle\]
  1. For each of the \(\vert \psi_i\rangle\) above, find the normalized vector \(\vert \phi_i\rangle\) that is orthogonal to it.
  2. Calculate the inner products \(\langle \psi_i\vert \psi_j\rangle\) for \(i\) and \(j=1\), \(2\), \(3\).
  • Found in: Quantum Fundamentals course(s)

group Small Group Activity

30 min.

Using \(pV\) and \(TS\) Plots
Students work out heat and work for rectangular paths on \(pV\) and \(TS\) plots. This gives with computing heat and work, applying the First Law, and recognizing that internal energy is a state function, which cannot change after a cyclic process.

group Small Group Activity

120 min.

Equipotential Surfaces
Students are prompted to consider the scalar superposition of the electric potential due to multiple point charges. First a single point charge is discussed, then four positive charges, then an electric quadrupole. Students draw the equipotential curves in the plane of the charges, while also considering the 3D nature of equipotentials.