group Small Group Activity

30 min.

Vector Integrals (Contour Map)
Students explore path integrals using a vector field map and thinking about integration as chop-multiply-add.

face Lecture

120 min.

Entropy and Temperature
These lecture notes for the second week of Thermal and Statistical Physics involve relating entropy and temperature in the microcanonical ensemble, using a paramagnet as an example. These notes include a few small group activities.

group Small Group Activity

30 min.

Total Charge
In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.

group Small Group Activity

60 min.

Going from Spin States to Wavefunctions
Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.

group Small Group Activity

30 min.

Stokes' Theorem
Students compute both sides of Stokes' theorem.
  • Found in: Vector Calculus II, Surfaces/Bridge Workshop course(s)

group Small Group Activity

60 min.

The Park

This is the first activity relating the surfaces to the corresponding contour diagrams, thus emphasizing the use of multiple representations.

Students work in small groups to interpret level curves representing different concentrations of lead.

group Small Group Activity

30 min.

Electrostatic Potential Due to a Ring of Charge

Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.

In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.

group Small Group Activity

120 min.

Projectile with Linear Drag
Students consider projectile motion of an object that experiences drag force that in linear with the velocity. Students consider the horizontal motion and the vertical motion separately. Students solve Newton's 2nd law as a differential equation.

accessibility_new Kinesthetic

10 min.

Curvilinear Basis Vectors
Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).

keyboard Computational Activity

120 min.

Position operator
Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.
These notes, from the third week of Thermal and Statistical Physics cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.
These notes from the fourth week of Thermal and Statistical Physics cover blackbody radiation and the Planck distribution. They include a number of small group activities.

The following are 3 different representations for the \(\textbf{same}\) state on a quantum ring for \(r_0=1\) \begin{equation} \left|{\Phi_a}\right\rangle = i\sqrt{\frac{ 2}{12}}\left|{3}\right\rangle - \sqrt{\frac{ 1}{12}}\left|{1}\right\rangle +\sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}}\left|{0}\right\rangle -i\sqrt{\frac{ 2}{ 12}}\left|{-1}\right\rangle +\sqrt{\frac{ 4}{12}}\left|{-3}\right\rangle \end{equation} \begin{equation} \left| \Phi_b\right\rangle \doteq \left( \begin{matrix} \vdots \\ i\sqrt{\frac{ 2}{12}}\\ 0 \\ -\sqrt{\frac{ 1}{12}} \\ \sqrt{\frac{ 3}{12}}e^{i\frac{\pi}{4}} \\ -i\sqrt{\frac{ 2}{12}}\\ 0 \\ \sqrt{\frac{4}{12} }\\ \vdots \end{matrix}\right) \begin{matrix} \leftarrow m=0 \end{matrix} \end{equation} \begin{equation} \Phi_c(\phi) \doteq \sqrt{\frac{1}{24 \pi}} \left( i\sqrt{2}e^{i 3 \phi} -e^{i\phi} +\sqrt{3}e^{i\frac{\pi}{4}} -i \sqrt{2} e^{-i\phi} + \sqrt{4}e^{-i 3 \phi} \right) \end{equation}

  1. With each representation of the state given above, explicitly calculate the probability that \(L_z=-1\hbar\). Then, calculate all other non-zero probabilities for values of \(L_z\) with a method/representation of your choice.
  2. Explain how you could be sure you calculated all of the non-zero probabilities.
  3. If you measured the \(z\)-component of angular momentum to be \(3\hbar\), what would the state of the particle be immediately after the measurement is made?
  4. With each representation of the state given above, explicitly calculate the probability that \(E=\frac{9}{2}\frac{\hbar^2}{I}\). Then, calculate all other non-zero probabilities for values of \(E\) with a method of your choice.
  5. If you measured the energy of the state to be \(\frac{9}{2}\frac{\hbar^2}{I}\), what would the state of the particle be immediately after the measurement is made?

  • Found in: Central Forces course(s)