Show that the plane polar coordinates are equivalent to spherical coordinates if we make the choices:
  1. The direction of \(\theta=0\) in spherical coordinates is the same as the direction of out of the plane in plane polar coordinates.
  2. Given the correspondance above, then if we choose the \(\theta\) of spherical coordinates is to be \(\pi/2\), we restrict to the equatorial plane of spherical coordinates.
  • Found in: Central Forces course(s)

group Small Group Activity

10 min.

Angular Momentum in Polar Coordinates
Students learn how to express Angular Momentum as a vector quantity in polar coordinates, and then in Cylindrical and Spherical Coordinates

group Small Group Activity

30 min.

Chain Rule
This small group activity is designed to provide practice with the chain rule and to develop familiarity with polar coordinates. Students work in small groups to relate partial derivatives in rectangular and polar coordinates. The whole class wrap-up discussion emphasizes the importance of specifying what quantities are being held constant.
  • Found in: Vector Calculus I course(s)

Find the rectangular coordinates of the point where the angle \(\frac{5\pi}{3}\) meets the unit circle. If this were a point in the complex plane, what would be the rectangular and exponential forms of the complex number? (See figure.)

  • Found in: Quantum Fundamentals course(s)

(Algebra involving trigonometric functions) Purpose: Practice with polar equations.

The general equation for a straight line in polar coordinates is given by: \begin{equation} r(\phi)=\frac{r_0}{\cos(\phi-\delta)} \end{equation} where \(r_0\) and \(\delta\) are constant parameters. Find the polar equation for the straight lines below. You do NOT need to evaluate any complicated trig or inverse trig functions. You may want to try plotting the general polar equation to figure out the roles of the parameters.

  1. \(y=3\)
  2. \(x=3\)
  3. \(y=-3x+2\)

  • Found in: Central Forces course(s)

group Small Group Activity

10 min.

Velocity and Acceleration in Polar Coordinates
Use geometry to find formulas for velocity and acceleration in polar coordinates.
  • Found in: Central Forces course(s)

group Small Group Activity

30 min.

Chain Rule Measurement
This small group activity using surfaces combines practice with the multivariable chain rule while emphasizing numerical representations of derivatives. Students work in small groups to measure partial derivatives in both rectangular and polar coordinates, then verify their results using the chain rule. The whole class wrap-up discussion emphasizes the relationship between a directional derivative in the \(r\)-direction and derivatives in \(x\)- and \(y\)-directions using the chain rule.
  • Found in: Vector Calculus I course(s)

group Small Group Activity

60 min.

The Wire
Students compute a vector line integral, then investigate whether this integral is path independent.

group Small Group Activity

5 min.

Maxima and Minima
This small group activity introduces students to constrained optimization problems. Students work in small groups to optimize a simple function on a given region. The whole class wrap-up discussion emphasizes the importance of the boundary.
  • Found in: Vector Calculus I course(s)

group Small Group Activity

30 min.

Conic Sections
Students are asked to explore the parameters that affect orbit shape using the supplied Maple worksheet or Mathematica notebook.
  • Found in: Central Forces course(s)

group Small Group Activity

30 min.

Finding \(d\boldsymbol{\vec{r}}\)
  • Found in: Vector Calculus II course(s)

group Small Group Activity

30 min.

Stokes' Theorem
Students compute both sides of Stokes' theorem.
  • Found in: Vector Calculus II, Surfaces/Bridge Workshop course(s)

group Small Group Activity

30 min.

Vector Surface and Volume Elements

Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.

  • Found in: AIMS Maxwell, Static Fields, Surfaces/Bridge Workshop, Problem-Solving course(s) Found in: Integration Sequence sequence(s)

The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

  1. Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.
  2. Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
  3. Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
  4. Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

  • Found in: E&M Ring Cycle Sequence sequence(s) Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s)

accessibility_new Kinesthetic

10 min.

Curvilinear Basis Vectors
Students use their arms to depict (sequentially) the different cylindrical and spherical basis vectors at the location of their shoulder (seen in relation to a specified origin of coordinates: either a set of axes hung from the ceiling of the room or perhaps a piece of furniture or a particular corner of the room).

face Lecture

30 min.

Differentials
  • Found in: Static Fields, Surfaces/Bridge Workshop course(s)

group Small Group Activity

30 min.

The Pretzel
  1. Find the chemical potential of an ideal monatomic gas in two dimensions, with \(N\) atoms confined to a square of area \(A=L^2\). The spin is zero.

  2. Find an expression for the energy \(U\) of the gas.

  3. Find an expression for the entropy \(\sigma\). The temperature is \(kT\).

  • Found in: Thermal and Statistical Physics course(s)

group Small Group Activity

30 min.

Acceleration
  • Found in: Vector Calculus II course(s)

group Small Group Activity

120 min.

Box Sliding Down Frictionless Wedge
Students solve for the equations of motion of a box sliding down (frictionlessly) a wedge, which itself slides on a horizontal surface, in order to answer the question "how much time does it take for the box to slide a distance \(d\) down the wedge?". This activities highlights finding kinetic energies when the coordinate system is not orthonormal and checking special cases, functional behavior, and dimensions.