title, topic, keyword
Small group, whiteboard, etc
Required in-class time for activities
Leave blank to search both

Activities

Small Group Activity

30 min.

##### Wavefunctions on a Quantum Ring
This activity lets students explore translating a wavefunction that isn't obviously made up of eigenstates at first glance into ket and matrix form. Then students explore wave functions, probabilities in a region, expectation values, and what wavefunctions can tell you about measurements of $L_z$.
• Found in: Central Forces course(s)

Lecture

30 min.

##### Compare & Contrast Kets & Wavefunctions
In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.
• Found in: Completeness Relations sequence(s)

Lecture

120 min.

##### Gibbs entropy approach
These lecture notes for the first week of https://paradigms.oregonstate.edu/courses/ph441 include a couple of small group activities in which students work with the Gibbs formulation of the entropy.
• Found in: Thermal and Statistical Physics course(s)

Problem

5 min.

##### Spin One Half Unknowns (Brief)
With the Spins simulation set for a spin 1/2 system, measure the probabilities of all the possible spin components for each of the unknown initial states $\left|{\psi_3}\right\rangle$ and $\left|{\psi_4}\right\rangle$. (Since $\left|{\psi_3}\right\rangle$ has already been covered in class, please only do $\left|{\psi_4}\right\rangle$ )
1. Use your measured probabilities to find each of the unknown states as a linear superposition of the $S_z$-basis states $\left|{+}\right\rangle$ and $\left|{-}\right\rangle$.
2. Articulate a Process: Write a set of general instructions that would allow another student in next year's class to find an unknown state from measured probabilities.
3. Compare Theory with Experiment: Design an experiment that will allow you to test whether your prediction for each of the unknown states is correct. Describe your experiment here, clearly but succinctly, as if you were writing it up for a paper. Do the experiment and discuss your results.
4. Make a Conceptual Connection: In general, can you determine a quantum state with spin-component probability measurements in only two spin-component-directions? Why or why not?
• Found in: Quantum Fundamentals course(s)

Problem

##### Gibbs entropy is extensive

Consider two noninteracting systems $A$ and $B$. We can either treat these systems as separate, or as a single combined system $AB$. We can enumerate all states of the combined by enumerating all states of each separate system. The probability of the combined state $(i_A,j_B)$ is given by $P_{ij}^{AB} = P_i^AP_j^B$. In other words, the probabilities combine in the same way as two dice rolls would, or the probabilities of any other uncorrelated events.

1. Show that the entropy of the combined system $S_{AB}$ is the sum of entropies of the two separate systems considered individually, i.e. $S_{AB} = S_A+S_B$. This means that entropy is extensive. Use the Gibbs entropy for this computation. You need make no approximation in solving this problem.
2. Show that if you have $N$ identical non-interacting systems, their total entropy is $NS_1$ where $S_1$ is the entropy of a single system.

##### Note
In real materials, we treat properties as being extensive even when there are interactions in the system. In this case, extensivity is a property of large systems, in which surface effects may be neglected.

• Found in: Thermal and Statistical Physics course(s)

Problem

##### Dimensional Analysis of Kets
1. $\left\langle {\Psi}\middle|{\Psi}\right\rangle =1$ Identify and discuss the dimensions of $\left|{\Psi}\right\rangle$.
2. For a spin $\frac{1}{2}$ system, $\left\langle {\Psi}\middle|{+}\right\rangle \left\langle {+}\middle|{\Psi}\right\rangle + \left\langle {\Psi}\middle|{-}\right\rangle \left\langle {-}\middle|{\Psi}\right\rangle =1$. Identify and discuss the dimensions of $\left|{+}\right\rangle$ and $\left|{-}\right\rangle$.
3. In the position basis $\int \left\langle {\Psi}\middle|{x}\right\rangle \left\langle {x}\middle|{\Psi}\right\rangle dx = 1$. Identify and discuss the dimesions of $\left|{x}\right\rangle$.
• Found in: Completeness Relations sequence(s)

Problem

##### Phase 2
Consider the three quantum states: $\left\vert \psi_1\right\rangle = \frac{4}{5}\left\vert +\right\rangle+ i\frac{3}{5} \left\vert -\right\rangle$ $\left\vert \psi_2\right\rangle = \frac{4}{5}\left\vert +\right\rangle- i\frac{3}{5} \left\vert -\right\rangle$ $\left\vert \psi_3\right\rangle = -\frac{4}{5}\left\vert +\right\rangle+ i\frac{3}{5} \left\vert -\right\rangle$
1. For each of the $\left|{\psi_i}\right\rangle$ above, calculate the probabilities of spin component measurements along the $x$, $y$, and $z$-axes.
2. Look For a Pattern (and Generalize): Use your results from $(a)$ to comment on the importance of the overall phase and of the relative phases of the quantum state vector.
• Found in: Quantum Fundamentals course(s)

Problem

##### Measurement Probabilities
A beam of spin-$\frac{1}{2}$ particles is prepared in the initial state $\left\vert \psi\right\rangle = \sqrt{\frac{2}{5}}\; |+\rangle_x - \sqrt{\frac{3}{5}}\; |-\rangle_x$(Note: this state is written in the $S_x$ basis!)
1. What are the possible results of a measurement of $S_x$, with what probabilities?
2. Repeat part a for measurements of $S_z$.

3. Suppose you start with a particle in the state given above, measure $S_x$, and happen to get $+\hbar /2$. You then take that same particle and measure $S_z$. What are the possible results and with what probability would you measure each possible result?
• Found in: Quantum Fundamentals course(s)

Problem

##### Diatomic hydrogen

At low temperatures, a diatomic molecule can be well described as a rigid rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}

1. What is the energy of the ground state and the first and second excited states of the $H_2$ molecule? i.e. the lowest three distinct energy eigenvalues.

2. At room temperature, what is the relative probability of finding a hydrogen molecule in the $\ell=0$ state versus finding it in any one of the $\ell=1$ states?
i.e. what is $P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)$

3. At what temperature is the value of this ratio 1?

4. At room temperature, what is the probability of finding a hydrogen molecule in any one of the $\ell=2$ states versus that of finding it in the ground state?
i.e. what is $P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)$

• Found in: Energy and Entropy course(s)

Kinesthetic

30 min.

##### Inner Products with Arms
Students perform an inner product between two spin states with the arms representation.

Small Group Activity

60 min.

##### Going from Spin States to Wavefunctions
Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.
• Found in: Quantum Fundamentals course(s) Found in: Completeness Relations, Arms Sequence for Complex Numbers and Quantum States sequence(s)

Small Group Activity

30 min.

##### Working with Representations on the Ring
This activity acts as a reintroduction to doing quantum calculations while also introducing the matrix representation on the ring, allowing students to discover how to index and form a column vector representing the given quantum state. In addition, this activity introduces degenerate measurements on the quantum ring and examines the state after measuring both degenerate and non-degenerate eigenvalues for the state.
• Found in: Central Forces course(s)

Lecture

120 min.

##### Boltzmann probabilities and Helmholtz
These notes, from the third week of https://paradigms.oregonstate.edu/courses/ph441 cover the canonical ensemble and Helmholtz free energy. They include a number of small group activities.
• Found in: Thermal and Statistical Physics course(s)

Small Group Activity

30 min.

##### Superposition States for a Particle on a Ring
Students calculate probabilities for a particle on a ring whose wavefunction is not easily separated into eigenstates by inspection. To find the energy, angular momentum, and position probabilities, students perform integrations with the wavefunction or decompose the wavefunction into a superposition of eigenfunctions.
• Found in: Quantum Ring Sequence sequence(s)

Small Group Activity

30 min.

##### Time Dependence for a Quantum Particle on a Ring Part 1
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.
• Found in: Central Forces, Theoretical Mechanics course(s) Found in: Quantum Ring Sequence sequence(s)

Small Group Activity

30 min.

##### Energy and Angular Momentum for a Quantum Particle on a Ring
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.
• Found in: Theoretical Mechanics course(s) Found in: Quantum Ring Sequence sequence(s)

Computational Activity

120 min.

##### Mean position
Students compute probabilities and averages given a probability density in one dimension. This activity serves as a soft introduction to the particle in a box, introducing all the concepts that are needed.
• Found in: Computational Physics Lab II course(s) Found in: Computational wave function inner products sequence(s)

Mathematica Activity

30 min.

##### Visualization of Quantum Probabilities for a Particle Confined to a Ring
Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.
• Found in: Central Forces course(s) Found in: Visualization of Quantum Probabilities, Quantum Ring Sequence sequence(s)

Mathematica Activity

30 min.

##### Visualizing Combinations of Spherical Harmonics
Students observe three different plots of linear combinations of spherical combinations with probability density represented by color on the sphere, distance from the origin (polar plot), and distance from the surface of the sphere.
• Found in: Central Forces course(s) Found in: Quantum Sphere Sequence, Visualization of Quantum Probabilities, Eigenfunction Sequence sequence(s)

Mathematica Activity

30 min.

##### Visualization of Quantum Probabilities for the Hydrogen Atom
Students use Mathematica to visualize the probability density distribution for the hydrogen atom orbitals with the option to vary the values of $n$, $\ell$, and $m$.
• Found in: Central Forces course(s) Found in: Visualization of Quantum Probabilities sequence(s)

Small White Board Question

5 min.

##### Normalization of the Gaussian for Wavefunctions
Students find a wavefunction that corresponds to a Gaussian probability density.
• Found in: Periodic Systems course(s) Found in: Fourier Transforms and Wave Packets sequence(s)

Small Group Activity

5 min.

##### Maxima and Minima
This small group activity introduces students to constrained optimization problems. Students work in small groups to optimize a simple function on a given region. The whole class wrap-up discussion emphasizes the importance of the boundary.
• Found in: Vector Calculus I course(s)

Small Group Activity

60 min.

##### Electrostatic Potential Due to a Pair of Charges (with Series)
Students work in small groups to use the superposition principle $V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}$ to find the electrostatic potential $V$ everywhere in space due to a pair of charges (either identical charges or a dipole). Different groups are assigned different arrangements of charges and different regions of space to consider: either on the axis of the charges or in the plane equidistant from the two charges, for either small or large values of the relevant geometric variable. Each group is asked to find a power series expansion for the electrostatic potential, valid in their group's assigned region of space. The whole class wrap-up discussion then compares and contrasts the results and discuss the symmetries of the two cases.
• Found in: Static Fields, AIMS Maxwell, Problem-Solving course(s) Found in: Power Series Sequence (E&M), E&M Ring Cycle Sequence sequence(s)