assignment Homework

Distribution function for double occupancy statistics
Orbitals Distribution function Thermal and Statistical Physics 2020

Let us imagine a new mechanics in which the allowed occupancies of an orbital are 0, 1, and 2. The values of the energy associated with these occupancies are assumed to be \(0\), \(\varepsilon\), and \(2\varepsilon\), respectively.

  1. Derive an expression for the ensemble average occupancy \(\langle N\rangle\), when the system composed of this orbital is in thermal and diffusive contact with a resevoir at temperature \(T\) and chemical potential \(\mu\).

  2. Return now to the usual quantum mechanics, and derive an expression for the ensemble average occupancy of an energy level which is doubly degenerate; that is, two orbitals have the identical energy \(\varepsilon\). If both orbitals are occupied the toal energy is \(2\varepsilon\). How does this differ from part (a)?

group Small Group Activity

30 min.

Heat capacity of N2
Contemporary Challenges 2022 (4 years)

equipartition quantum energy levels

Students sketch the temperature-dependent heat capacity of molecular nitrogen. They apply the equipartition theorem and compute the temperatures at which degrees of freedom “freeze out.”

face Lecture

120 min.

Ideal Gas
Thermal and Statistical Physics 2020

ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.

face Lecture

120 min.

Gibbs entropy approach
Thermal and Statistical Physics 2020

Gibbs entropy information theory probability statistical mechanics

These lecture notes for the first week of Thermal and Statistical Physics include a couple of small group activities in which students work with the Gibbs formulation of the entropy.

face Lecture

120 min.

Fermi and Bose gases
Thermal and Statistical Physics 2020

Fermi level fermion boson Bose gas Bose-Einstein condensate ideal gas statistical mechanics phase transition

These lecture notes from week 7 of Thermal and Statistical Physics apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.