assignment Homework

Spherical Shell Step Functions
step function charge density Static Fields 2022 (5 years)

One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. If you need to review this, see the following link in the math-physics book: https://paradigms.oregonstate.eduhttps://books.physics.oregonstate.edu/GMM/step.html

Consider a spherical shell with charge density \(\rho (\vec{r})=\alpha3e^{(k r)^3}\) between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else. Use step functions to write this charge density as a single function valid everywhere in space.

assignment Homework

Theta Parameters
Static Fields 2022 (5 years)

The function \(\theta(x)\) (the Heaviside or unit step function) is a defined as: \begin{equation} \theta(x) =\begin{cases} 1 & \textrm{for}\; x>0 \\ 0 & \textrm{for}\; x<0 \end{cases} \end{equation} This function is discontinuous at \(x=0\) and is generally taken to have a value of \(\theta(0)=1/2\).

Make sketches of the following functions, by hand, on axes with the same scale and domain. Briefly describe, using good scientific writing that includes both words and equations, the role that the number two plays in the shape of each graph: \begin{align} y &= \theta (x)\\ y &= 2+\theta (x)\\ y &= \theta(2+x)\\ y &= 2\theta (x)\\ y &= \theta (2x) \end{align}

assignment Homework

Magnetic Field and Current
Static Fields 2022 (3 years) Consider the magnetic field \[ \vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases} \]
  1. Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
  2. Find a formula for the current density that creates this magnetic field.
  3. Interpret your formula for the current density, i.e. explain briefly in words where the current is.

group Small Group Activity

30 min.

Using \(pV\) and \(TS\) Plots
Energy and Entropy 2021 (2 years)

work heat first law energy

Students work out heat and work for rectangular paths on \(pV\) and \(TS\) plots. This gives with computing heat and work, applying the First Law, and recognizing that internal energy is a state function, which cannot change after a cyclic process.

assignment Homework

Total Charge
charge density curvilinear coordinates

Integration Sequence

Static Fields 2022 (5 years)

For each case below, find the total charge.

  1. A positively charged (dielectric) spherical shell of inner radius \(a\) and outer radius \(b\) with a spherically symmetric internal charge density \begin{equation} \rho(\vec{r})=3\alpha\, e^{(kr)^3} \end{equation}
  2. A positively charged (dielectric) cylindrical shell of inner radius \(a\) and outer radius \(b\) with a cylindrically symmetric internal charge density \begin{equation} \rho(\vec{r})=\alpha\, \frac{1}{s}\, e^{ks} \end{equation}

assignment Homework

Electric Field and Charge
divergence charge density Maxwell's equations electric field Static Fields 2022 (3 years) Consider the electric field \begin{equation} \vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases} \end{equation}
  1. Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
  2. Find a formula for the charge density that creates this electric field.
  3. Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.

computer Computer Simulation

30 min.

Approximating Functions with Power Series
Theoretical Mechanics (12 years)

Taylor series power series approximation

Power Series Sequence (E&M)

Students use prepared Sage code or a prepared Mathematica notebook to plot \(\sin\theta\) simultaneously with several terms of a power series expansion to judge how well the approximation fits. Students can alter the worksheet to change the number of terms in the expansion and even to change the function that is being considered. Students should have already calculated the coefficients for the power series expansion in a previous activity, Calculating Coefficients for a Power Series.

group Small Group Activity

30 min.

DELETE Navigating a Hill
Static Fields 2022 (4 years) In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.

keyboard Computational Activity

120 min.

Mean position
Computational Physics Lab II 2022

probability density particle in a box wave function quantum mechanics

Students compute probabilities and averages given a probability density in one dimension. This activity serves as a soft introduction to the particle in a box, introducing all the concepts that are needed.

computer Mathematica Activity

30 min.

Visualization of Quantum Probabilities for a Particle Confined to a Ring
Central Forces 2023 (3 years)

central forces quantum mechanics angular momentum probability density eigenstates time evolution superposition mathematica

Quantum Ring Sequence

Students see probability density for eigenstates and linear combinations of eigenstates for a particle on a ring. The three visual representations: standard position vs probability density plot, a ring with colormapping, and cylindrical plot with height and colormapping, are also animated to visualize time-evolution.

keyboard Computational Activity

120 min.

Sinusoidal basis set
Computational Physics Lab II 2022

inner product wave function quantum mechanics particle in a box

Students compute inner products to expand a wave function in a sinusoidal basis set. This activity introduces the inner product for wave functions, and the idea of approximating a wave function using a finite set of basis functions.

assignment Homework

Free energy of a harmonic oscillator
Helmholtz free energy harmonic oscillator Thermal and Statistical Physics 2020

A one-dimensional harmonic oscillator has an infinite series of equally spaced energy states, with \(\varepsilon_n = n\hbar\omega\), where \(n\) is an integer \(\ge 0\), and \(\omega\) is the classical frequency of the oscillator. We have chosen the zero of energy at the state \(n=0\) which we can get away with here, but is not actually the zero of energy! To find the true energy we would have to add a \(\frac12\hbar\omega\) for each oscillator.

  1. Show that for a harmonic oscillator the free energy is \begin{equation} F = k_BT\log\left(1 - e^{-\frac{\hbar\omega}{k_BT}}\right) \end{equation} Note that at high temperatures such that \(k_BT\gg\hbar\omega\) we may expand the argument of the logarithm to obtain \(F\approx k_BT\log\left(\frac{\hbar\omega}{kT}\right)\).

  2. From the free energy above, show that the entropy is \begin{equation} \frac{S}{k_B} = \frac{\frac{\hbar\omega}{kT}}{e^{\frac{\hbar\omega}{kT}}-1} - \log\left(1-e^{-\frac{\hbar\omega}{kT}}\right) \end{equation}

    Entropy of a simple harmonic oscillator
    Heat capacity of a simple harmonic oscillator
    This entropy is shown in the nearby figure, as well as the heat capacity.

assignment Homework

One-dimensional gas
Ideal gas Entropy Tempurature Thermal and Statistical Physics 2020 Consider an ideal gas of \(N\) particles, each of mass \(M\), confined to a one-dimensional line of length \(L\). The particles have spin zero (so you can ignore spin) and do not interact with one another. Find the entropy at temperature \(T\). You may assume that the temperature is high enough that \(k_B T\) is much greater than the ground state energy of one particle.

face Lecture

120 min.

Fermi and Bose gases
Thermal and Statistical Physics 2020

Fermi level fermion boson Bose gas Bose-Einstein condensate ideal gas statistical mechanics phase transition

These lecture notes from week 7 of Thermal and Statistical Physics apply the grand canonical ensemble to fermion and bosons ideal gasses. They include a few small group activities.

assignment Homework

Entropy of mixing
Entropy Equilibrium Sackur-Tetrode Thermal and Statistical Physics 2020

Suppose that a system of \(N\) atoms of type \(A\) is placed in diffusive contact with a system of \(N\) atoms of type \(B\) at the same temperature and volume.

  1. Show that after diffusive equilibrium is reached the total entropy is increased by \(2Nk\ln 2\). The entropy increase \(2Nk\ln 2\) is known as the entropy of mixing.

  2. If the atoms are identical (\(A=B\)), show that there is no increase in entropy when diffusive contact is established. The difference has been called the Gibbs paradox.

  3. Since the Helmholtz free energy is lower for the mixed \(AB\) than for the separated \(A\) and \(B\), it should be possible to extract work from the mixing process. Construct a process that could extract work as the two gasses are mixed at fixed temperature. You will probably need to use walls that are permeable to one gas but not the other.

Note

This course has not yet covered work, but it was covered in Energy and Entropy, so you may need to stretch your memory to finish part (c).

assignment Homework

Pressure and entropy of a degenerate Fermi gas
Fermi gas Pressure Entropy Thermal and Statistical Physics 2020
  1. Show that a Fermi electron gas in the ground state exerts a pressure \begin{align} p = \frac{\left(3\pi^2\right)^{\frac23}}{5} \frac{\hbar^2}{m}\left(\frac{N}{V}\right)^{\frac53} \end{align} In a uniform decrease of the volume of a cube every orbital has its energy raised: The energy of each orbital is proportional to \(\frac1{L^2}\) or to \(\frac1{V^{\frac23}}\).

  2. Find an expression for the entropy of a Fermi electron gas in the region \(kT\ll \varepsilon_F\). Notice that \(S\rightarrow 0\) as \(T\rightarrow 0\).

assignment Homework

Boltzmann probabilities
Energy Entropy Boltzmann probabilities Thermal and Statistical Physics 2020 (3 years) Consider a three-state system with energies \((-\epsilon,0,\epsilon)\).
  1. At infinite temperature, what are the probabilities of the three states being occupied? What is the internal energy \(U\)? What is the entropy \(S\)?
  2. At very low temperature, what are the three probabilities?
  3. What are the three probabilities at zero temperature? What is the internal energy \(U\)? What is the entropy \(S\)?
  4. What happens to the probabilities if you allow the temperature to be negative?

group Small Group Activity

5 min.

Static Fields Equation Sheet
Static Fields 2022 (3 years)

face Lecture

120 min.

Chemical potential and Gibbs distribution
Thermal and Statistical Physics 2020

chemical potential Gibbs distribution grand canonical ensemble statistical mechanics

These notes from the fifth week of Thermal and Statistical Physics cover the grand canonical ensemble. They include several small group activities.

face Lecture

120 min.

Ideal Gas
Thermal and Statistical Physics 2020

ideal gas particle in a box grand canonical ensemble chemical potential statistical mechanics

These notes from week 6 of Thermal and Statistical Physics cover the ideal gas from a grand canonical standpoint starting with the solutions to a particle in a three-dimensional box. They include a number of small group activities.