format_list_numbered Sequence

Integration Sequence
Students learn/review how to do integrals in a multivariable context, using the vector differential \(d\vec{r}=dx\, \hat{x}+dy\, \hat{y}+dz\, \hat{z}\) and its curvilinear coordinate analogues as a unifying strategy. This strategy is common among physicists, but is NOT typically taught in vector calculus courses and will be new to most students.

assignment_ind Small White Board Question

10 min.

Vector Differential--Rectangular

In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.

This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..

face Lecture

30 min.

Differentials
  • Found in: Static Fields, Surfaces/Bridge Workshop course(s)

group Small Group Activity

30 min.

Finding \(d\boldsymbol{\vec{r}}\)
  • Found in: Vector Calculus II course(s)

group Small Group Activity

5 min.

The Resistors
This small group activity is designed to provide practice with the multivariable chain rule. Students determine a particular rate of change using given information involving other rates of change. The discussion emphasizes the equivalence of a variety of approaches, including the use of differentials. Good “review” problem; can also be used as a homework problem.
  • Found in: Vector Calculus I, Surfaces/Bridge Workshop course(s)

group Small Group Activity

5 min.

Maxima and Minima
This small group activity introduces students to constrained optimization problems. Students work in small groups to optimize a simple function on a given region. The whole class wrap-up discussion emphasizes the importance of the boundary.
  • Found in: Vector Calculus I course(s)

group Small Group Activity

30 min.

Vector Surface and Volume Elements

Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.

  • Found in: AIMS Maxwell, Static Fields, Surfaces/Bridge Workshop course(s) Found in: Integration Sequence sequence(s)

group Small Group Activity

30 min.

Vector Differential--Curvilinear

In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).

Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.

For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.

  • Found in: Static Fields, AIMS Maxwell course(s)

group Small Group Activity

30 min.

Flux through a Cone
Students calculate the flux from the vector field \(\vec{F} = C\, z\, \hat{z}\) through a right cone of height \(H\) and radius \(R\) .
  • Found in: Static Fields, AIMS Maxwell course(s) Found in: Integration Sequence sequence(s)

group Small Group Activity

60 min.

The Valley
Students compute vector line integrals and explore their properties.
  • Found in: Vector Calculus II, Surfaces/Bridge Workshop course(s)

face Lecture

10 min.

Systems of Particles Lecture Notes
  • Found in: Central Forces course(s)

group Small Group Activity

5 min.

Acting Out Flux
Students hold rulers and meter sticks to represent a vector field. The instructor holds a hula hoop to represent a small area element. Students are asked to describe the flux of the vector field through the area element.

group Small Group Activity

30 min.

Stokes' Theorem
Students compute both sides of Stokes' theorem.
  • Found in: Vector Calculus II, Surfaces/Bridge Workshop course(s)

group Small Group Activity

30 min.

Murder Mystery Method

group Small Group Activity

30 min.

Scalar Surface and Volume Elements

Students use known algebraic expressions for length elements \(d\ell\) to determine all simple scalar area \(dA\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.

This activity is identical to Vector Surface and Volume Elements except uses a scalar approach to find surface, and volume elements.

  • Found in: Static Fields, AIMS Maxwell course(s) Found in: Integration Sequence sequence(s)
Find the total differential of the following functions:
  1. \(y=3x^2 + 4\cos 2x\)
  2. \(y=3x^2\cos kx\) (where \(k\) is a constant)
  3. \(y=\frac{\cos 7x}{x^2}\)
  4. \(y=\cos(3x^2-2)\)
  • Found in: Static Fields, AIMS Maxwell course(s)

  • Find \(dA\) on the surface of an (open) cone in both cylindrical and spherical coordinates. Hint: Be smart about how you coordinatize the cone.
  • Using integration, find the surface area of an (open) cone with height \(H\) and radius \(R\). Do this problem in both cylindrical and spherical coordinates.

  • Found in: Static Fields, AIMS Maxwell course(s)

group Small Group Activity

30 min.

The Cone
Students set up and compute a scalar surface integral.
  • Found in: Vector Calculus II, Surfaces/Bridge Workshop course(s)

group Small Group Activity

60 min.

The Wire
Students compute a vector line integral, then investigate whether this integral is path independent.