Activities
Students work in small groups to use the superposition principle \[\vec{A}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert}\, d\tau^{\prime}\] to find an integral expression for the magnetic vector potential, \(\vec{A}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{A}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Students work in small groups to use the Biot-Savart law \[\vec{B}(\vec{r}) =\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}^{\,\prime})\times \left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the magnetic field, \(\vec{B}(\vec{r})\), due to a spinning ring of charge.
In an optional extension, students find a series expansion for \(\vec{B}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Consider the electric field \begin{equation} \vec E(r,\theta,\phi) = \begin{cases} 0&\textrm{for } r<a\\ \frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ 0 & \textrm{for } r>b \\ \end{cases} \end{equation}
- (4pts) Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
- (4pts) Find a formula for the charge density that creates this electric field.
- (2pts) Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.
Students integrate numerically to find the electric field due to a cone of surface charge, and then visualize the result. This integral can be done in either spherical or cylindrical coordinates, giving students a chance to reason about which coordinate system would be more convenient.
Students work in small groups to use Coulomb's Law \[\vec{E}(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})\left(\vec{r}-\vec{r}^{\,\prime}\right)}{\vert \vec{r}-\vec{r}^{\,\prime}\vert^3} \, d\tau^{\prime}\] to find an integral expression for the electric field, \(\vec{E}(\vec{r})\), everywhere in space, due to a ring of charge.
In an optional extension, students find a series expansion for \(\vec{E}(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
Sketch each of the vector fields below.
- \(\boldsymbol{\vec F} =-y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
- \(\boldsymbol{\vec G} = x\,\boldsymbol{\hat x} + y\,\boldsymbol{\hat y}\)
- \(\boldsymbol{\vec H} = y\,\boldsymbol{\hat x} + x\,\boldsymbol{\hat y}\)
In this small group activity, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in different coordinate systems (cartesian, cylindrical, spherical).
Use Vector Differential--Rectangular as an introduction. This activity can be done simultaneously with Pineapples and Pumpkins where students or the instructor cut volume elements out of pineapples and/or pumpkins to show the geometry.
In this introductory lecture/SWBQ, students are given a picture as a guide. They then write down an algebraic expression for the vector differential in rectangular coordinates for coordinate equals constant paths.
This activity can be done as a mini-lecture/SWBQ as an introduction to Vector Differential--Curvilinear where students find the vector differential in cylindrical and spherical coordinates..
(4pts) Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation*} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation*}
Consider a column of atoms each of mass \(M\) at temperature \(T\) in a uniform gravitational field \(g\). Find the thermal average potential energy per atom. The thermal average kinetic energy is independent of height. Find the total heat capacity per atom. The total heat capacity is the sum of contributions from the kinetic energy and from the potential energy. Take the zero of the gravitational energy at the bottom \(h=0\) of the column. Integrate from \(h=0\) to \(h=\infty\). You may assume the gas is ideal.
Consider the magnetic field \[ \vec{B}(s,\phi,z)= \begin{cases} 0&0\le s<a\\ \alpha \frac{1}{s}(s^4-a^4)\, \hat{\phi}&a<s<b\\ 0&s>b \end{cases} \]
- (2pts) Use step and/or delta functions to write this magnetic field as a single expression valid everywhere in space.
- (4pts) Find a formula for the current density that creates this magnetic field.
- (2pts) Interpret your formula for the current density, i.e. explain briefly in words where the current is.
(4pts) Consider a thin charged rod of length \(L\) standing along the \(z\)-axis with the bottom end on the \(xy\)-plane. The charge density \(\lambda\) is constant. Find the electric field at the point \((0,0,2L)\).
Consider the finite line with a uniform charge density from class.
- Write an integral expression for the electric field at any point in space due to the finite line. In addition to your usual physics sense-making, you must include a clearly labeled figure and discuss what happens to the direction of the unit vectors as you integrate.Consider the finite line with a uniform charge density from class.
- Perform the integral to find the \(z\)-component of the electric field. In addition to your usual physics sense-making, you must compare your result to the gradient of the electric potential we found in class. (If you want to challenge yourself, do the \(s\)-component as well!)
The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}
This problem explores the consequences of the divergence theorem for this shell.
- Using the given description of the gravitational field, find the divergence of the gravitational field everywhere in space. You will need to divide this question up into three parts: \(r<a\), \(a<r<b\), and \(r>b\).
- Briefly discuss the physical meaning of the divergence in this particular example.
- For this gravitational field, verify the divergence theorem on a sphere, concentric with the shell, with radius \(Q\), where \(a<Q<b\). ("Verify" the divergence theorem means calculate the integrals from both sides of the divergence theorem and show that they give the same answer.)
- Briefly discuss how this example would change if you were discussing the electric field of a uniformly charged spherical shell.
Problem
Nuclei of a particular isotope species contained in a crystal have spin \(I=1\), and thus, \(m = \{+1,0,-1\}\). The interaction between the nuclear quadrupole moment and the gradient of the crystalline electric field produces a situation where the nucleus has the same energy, \(E=\varepsilon\), in the state \(m=+1\) and the state \(m=-1\), compared with an energy \(E=0\) in the state \(m=0\), i.e. each nucleus can be in one of 3 states, two of which have energy \(E=\varepsilon\) and one has energy \(E=0\).
Find the Helmholtz free energy \(F = U-TS\) for a crystal containing \(N\) nuclei which do not interact with each other.
Find an expression for the entropy as a function of temperature for this system. (Hint: use results of part a.)
- Indicate what your results predict for the entropy at the extremes of very high temperature and very low temperature.
Students write python programs to compute the potential due to a square of surface charge, and then to visualize the result. This activity can be used to introduce students to the process of integrating numerically.
The electrostatic potential due to a point charge at the origin is given by: \begin{equation*} V=\frac{1}{4\pi\epsilon_0} \frac{q}{r} \end{equation*}
- (2pts) Find the electric field due to a point charge at the origin as a gradient in rectangular coordinates.
- (2pts) Find the electric field due to a point charge at the origin as a gradient in spherical coordinates.
- (2pts) Find the electric field due to a point charge at the origin as a gradient in cylindrical coordinates.
- Students need to understand that the surface represents the electric potential in the center of a parallel plate capacitor. Try doing the activity Electric Potential of Two Charged Plates before this activity.
- Students should know that
- objects with like charge repel and opposite charge attract,
- object tend to move toward lower energy configurations
- The potential energy of a charged particle is related to its charge: \(U=qV\)
- The force on a charged particle is related to its charge: \(\vec{F}=q\vec{E}\)
Students work in small groups to use the superposition principle \[V(\vec{r}) =\frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}^{\,\prime})}{\vert \vec{r}-\vec{r}^{\,\prime}\vert} \, d\tau^{\prime}\] to find an integral expression for the electrostatic potential, \(V(\vec{r})\), everywhere in space, due to a ring of charge.
In an optional extension, students find a series expansion for \(V(\vec{r})\) either on the axis or in the plane of the ring, for either small or large values of the relevant geometric variable. Add an extra half hour or more to the time estimate for the optional extension.
In this small group activity, students integrate over non-uniform charge densities in cylindrical and spherical coordinates to calculate total charge.
Students work in small groups to use the superposition principle \[V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\sum_i \frac{q_i}{\vert\vec{r}-\vec{r}_i\vert}\] to find the electrostatic potential \(V\) everywhere in space due to a pair of charges (either identical charges or a dipole). Different groups are assigned different arrangements of charges and different regions of space to consider: either on the axis of the charges or in the plane equidistant from the two charges, for either small or large values of the relevant geometric variable. Each group is asked to find a power series expansion for the electrostatic potential, valid in their group's assigned region of space. The whole class wrap-up discussion then compares and contrasts the results and discuss the symmetries of the two cases.
Students, pretending they are point charges, move around the room so as to make an imaginary magnetic field meter register a constant magnetic field, introducing the concept of steady current. Students act out linear \(\vec{I}\), surface \(\vec{K}\), and volume \(\vec{J}\) current densities. The instructor demonstrates what it means to measure these quantities by counting how many students pass through a gate.
Students use a plastic surface representing the potential due to a charged sphere to explore the electrostatic potential, equipotential lines, and the relationship between potential and electric field.
Students will estimate the work done by a given electric field. They will connect the work done to the height of a plastic surface graph of the electric potential.
These lecture notes from the ninth week of https://paradigms.oregonstate.edu/courses/ph441 cover phase transformations, the Clausius-Clapeyron relation, mean field theory and more. They include a number of small group activities.
Students explore path integrals using a vector field map and thinking about integration as chop-multiply-add.
(4pts) Sketch each of the vector fields below.
- \(\boldsymbol{\vec K}=s\,\boldsymbol{\hat s}\)
- \(\boldsymbol{\vec L}=\frac1s\boldsymbol{\hat\phi}\)
- \(\boldsymbol{\vec M}=\sin\phi\,\boldsymbol{\hat s}\)
- \(\boldsymbol{\vec N}=\sin(2\pi s)\,\boldsymbol{\hat\phi}\)
Let \begin{align} \boldsymbol{\vec a} &= \boldsymbol{\hat x}-3\boldsymbol{\hat y}-\boldsymbol{\hat z}\\ \boldsymbol{\vec b} &= \boldsymbol{\hat x}+\boldsymbol{\hat y}+2\boldsymbol{\hat z}\\ {\boldsymbol{\vec c}} &= -2\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z}\\ \boldsymbol{\vec d} &= -\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z} \end{align}
Use the dot product to determine which pairs (if any) of these vectors
- Are perpendicular?
- Are parallel?
- Have an angle less than \(\pi/2\) between them?
- Have an angle of more than \(\pi/2\) between them?
For each of the following vector fields, find a potential function if one exists, or argue that none exists.
- \(\boldsymbol{\vec{F}} = (3x^2 + \tan y)\,\boldsymbol{\hat{x}} + (3y^2 + x\sec^2 y) \,\boldsymbol{\hat{y}}\)
- \(\boldsymbol{\vec{G}} = y\,\boldsymbol{\hat{x}} - x\,\boldsymbol{\hat{y}}\)
- \(\boldsymbol{\vec{H}} = (2xy + y^2 \sin z) \,\boldsymbol{\hat{x}} + (x^2 + z + 2xy\sin z) \,\boldsymbol{\hat{y}} + (y + z + xy^2 \cos z) \,\boldsymbol{\hat{z}}\)
- \(\boldsymbol{\vec{K}} = yz \,\boldsymbol{\hat{x}} + xz \,\boldsymbol{\hat{y}}\)
Main ideas
- Finding potential functions.
Students love this activity. Some groups will finish in 10 minutes or less; few will require as much as 30 minutes. ^{*}
Prerequisites
- Fundamental Theorem for line integrals
- The Murder Mystery Method
Warmup
none
Props
- whiteboards and pens
Wrapup
- Revisit integrating conservative vector fields along various paths, including reversing the orientation and integrating around closed paths.
Details
In the Classroom
- We recommend having the students work in groups of 2 on this activity, and not having them turn anything in.
- Most students will treat the last example as 2-dimensional, giving the answer \(xyz\). Ask these students to check their work by taking the gradient; most will include a \(\boldsymbol{\hat{z}}\) term. Let them think this through. The correct answer of course depends on whether one assumes that \(z\) is constant; we have deliberately left this ambiguous.
- It is good and proper that students want to add together multivariable terms. Keep returning to the gradient, something they know well. It is better to discover the guidelines themselves.
Subsidiary ideas
- 3-d vector fields do not necessarily have a \(\boldsymbol{\hat{z}}\)-component!
Homework
A challenging question to ponder is why a surface fails to exist for nonconservative fields. Using an example such as \(y\,\boldsymbol{\hat{x}}+\boldsymbol{\hat{y}}\), prompt students to plot the field and examine its magnitude at various locations. Suggest piecing together level sets. There is serious geometry lurking that entails smoothness. Wrestling with this is healthy.
Essay questions
Write 3-5 sentences describing the connection between derivatives and integrals in the single-variable case. In other words, what is the one-dimensional version of MMM? Emphasize that much of vector calculus is generalizing concepts from single-variable theory.
Enrichment
The derivative check for conservative vector fields can be described using the same type of diagrams as used in the Murder Mystery Method; this is just moving down the diagram (via differentiation) from the row containing the components of the vector field, rather than moving up (via integration). We believe this should not be mentioned until after this lab.
When done in 3-d, this makes a nice introduction to curl --- which however is not needed until one is ready to do Stokes' Theorem. We would therefore recommend delaying this entire discussion, including the 2-d case, until then.
- Work out the Murder Mystery Method using polar basis vectors, by reversing the process of taking the gradient in this basis.
- Revisit the example in the AmpĂ¨re's Law lab, using the Fundamental Theorem to explain the results. This can be done without reference to a basis, but it is worth computing \(\boldsymbol{\vec\nabla}\phi\) in a polar basis.
A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]
Students use known algebraic expressions for vector line elements \(d\boldsymbol{\vec{r}}\) to determine all simple vector area \(d\boldsymbol{\vec{A}}\) and volume elements \(d\tau\) in cylindrical and spherical coordinates.
This activity is identical to Scalar Surface and Volume Elements except uses a vector approach to find directed surface and volume elements.
Students construct two different rectangular coordinate systems and corresponding vector bases, then compare computations done with each.
Students hold rulers and meter sticks to represent a vector field. The instructor holds a hula hoop to represent a small area element. Students are asked to describe the flux of the vector field through the area element.
Students compute a vector line integral, then investigate whether this integral is path independent.
Students compute the outer product of a vector on itself to product a projection operator. Students discover that projection operators are idempotent (square to themselves) and that a complete set of outer products of an orthonormal basis is the identity (a completeness relation).
Students are shown a topographic map of an oval hill and imagine that the classroom is on the hill. They are asked to point in the direction of the gradient vector appropriate to the point on the hill where they are "standing".
Each small group of 3-4 students is given a white board or piece of paper with a square grid of points on it.
Each group is given a different two-dimensional vector \(\vec{k}\) and is asked to calculate the value of \(\vec{k} \cdot \vec {r}\) for each point on the grid and to draw the set of points with constant value of \(\vec{k} \cdot \vec{r}\) using rainbow colors to indicate increasing value.
Students consider the relation (1) between the angular momentum and magnetic moment for a current loop and (2) the force on a magnetic moment in an inhomogeneous magnetic field. Students make a (classical) prediction of the outcome of a Stern-Gerlach experiment.
In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.
Students learn how to express Angular Momentum as a vector quantity in polar coordinates, and then in Cylindrical and Spherical Coordinates
Students work in groups to measure the steepest slope and direction on a plastic surface, and to compare their result with the gradient vector, obtained by measuring its components (the slopes in the coordinate directions).
In this small group activity, students draw components of a vector in Cartesian and polar bases. Students then write the components of the vector in these bases as both dot products with unit vectors and as bra/kets with basis bras.
Students compute vector line integrals and explore their properties.
This activity acts as a reintroduction to doing quantum calculations while also introducing the matrix representation on the ring, allowing students to discover how to index and form a column vector representing the given quantum state. In addition, this activity introduces degenerate measurements on the quantum ring and examines the state after measuring both degenerate and non-degenerate eigenvalues for the state.
Students work in groups to measure the steepest slope and direction at a given point on a plastic surface and to compare their result with the gradient vector, obtained by measuring its components (the slopes in the coordinate directions).
In this small group activity, students determine various aspects of local points on an elliptic hill which is a function of two variables. The gradient is emphasized as a local quantity which points in the direction of greatest change at a point in the scalar field.
Begin by prompting the students to brainstorm different ways to represent a three dimensional scalar field on a 2-D surface (like their paper or a whiteboard). The students use a pre-made Sage code or a Mathematica worksheet to visualize the electrostatic potential of several distributions of charges. The computer algebra systems demonstrate several different ways of plotting the potential.
Students calculate the flux from the vector field \(\vec{F} = C\, z\, \hat{z}\) through a right cone of height \(H\) and radius \(R\) .
This small group activity using surfaces relates the geometric definition of directional derivatives to the components of the gradient vector. Students work in small groups to measure a directional derivative directly, then compare its components with measured partial derivatives in rectangular coordinates. The whole class wrap-up discussion emphasizes the relationship between the geometric gradient vector and directional derivatives.
Students predict from graphs of simple 2-d vector fields whether the curl is positive, negative, or zero in various regions of the domain using the definition of the curl of a vector field at a point as the maximum circulation per unit area through an infinitesimal box surrounding that point. Optionally, students can use computer algebra to verify their predictions.