Quantum Fundamentals: Winter-2026
HW 1 (SOLUTION): Due W1 D3 MathBits

  1. Expectations for this course S1 5409S

    Welcome to the class!

    We would like to get to know you a bit and learn about your expectations for this course. Please take a few minutes to share your thoughts on the following questions.

    1. What have you heard or learned about quantum mechanics? Where did you learn it?
    2. What do you expect to get out of this class? (This could include how you hope your understanding, ways of thinking, confidence, or feelings about quantum mechanics will develop over the term.)
    3. How do you feel about taking this class? Nervous, excited, bored, etc.? What makes you feel that way?
    4. Are there aspects of quantum mechanics you are particularly curious about?

  2. Complex Arithmetic: Rectangular Form S1 5409S For the complex numbers \(z_1=3-4i\) and \(z_2=7+2i\), compute:
    1. \(z_1-z_2\)
      \begin{align} z_1-z_2&=(3-4i)-(7+2i)\\ &=(3-7)+(-4-2)i\\ &=-4-6i \end{align}
    2. \(z_1 \, z_2\)
      \begin{align} z_1 \, z_2&=(3-4i)(7+2i)\\ &=21+6i-28i+8\\ &=29-22i \end{align}
    3. \(\frac{z_1}{z_2}\)
      \begin{align} \frac{z_1}{z_2}&=\frac{3-4i}{7+2i}\\ &=\frac{3-4i}{7+2i}\,\frac{7-2i}{7-2i}\\ &=\frac{21-6i-28i-8}{49-14i+14i+4}\\ &= \frac{13-34i}{53}\\ &=\frac{13}{53}-\frac{34i}{53} \end{align}
  3. Matrix Refresher S1 5409S Calculate the following quantities for the matrices: \[A\doteq \begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-1&0\\ \end{pmatrix} \hspace{2em} B\doteq \begin{pmatrix} a&b&c\\ d&e&f\\ g&h&j\\ \end{pmatrix} \hspace{2em} C\doteq \begin{pmatrix} \cos\theta&-\sin\theta\\\sin\theta&\cos\theta\\ \end{pmatrix} \] and the vector: \[\left|D\right\rangle\doteq \begin{pmatrix} 1\\ i\\ -1\\ \end{pmatrix} \hspace{2em} \]
    1. \(AB\)

      \[AB\doteq \begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-1&0\\ \end{pmatrix} \begin{pmatrix} a&b&c\\ d&e&f\\ g&h&j\\ \end{pmatrix} = \begin{pmatrix} a&b&c\\ g&h&j\\ -d&-e&-f\\ \end{pmatrix} \]

    2. \({\rm tr} (B)\)

      \[{\rm tr} (B)\doteq{\rm tr} \begin{pmatrix} a&b&c\\ d&e&f\\ g&h&j\\ \end{pmatrix} =a+e+j\]

    3. \(A\vert D\rangle\)

      \[A\vert D\rangle\doteq \begin{pmatrix} 1&0&0\\ 0&0&1\\ 0&-1&0\\ \end{pmatrix} \begin{pmatrix} 1\\ i\\ -1\\ \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ -i\\ \end{pmatrix} \]

    4. \(\det(\lambda{\cal I}-A)\) where \(\lambda\) is a scalar.

      \[\det(\lambda{\cal I}-A) \doteq\left\vert \begin{matrix} \lambda-1&0&0\\ 0&\lambda&-1\\0&1&\lambda \end{matrix} \right\vert =\lambda^2(\lambda-1)+(\lambda-1)=(\lambda-1)(\lambda-i)(\lambda+i)\]

    5. \(C^{-1}\) (Hint: Geometrically, what is the \(C\) transformation? What transformation undoes what \(C\) does?)

      \(C\) is the matrix that rotates two-dimensional vectors counterclockwise through the angle \(\theta\). Notice that \(C^{-1}\) is just the matrix that rotates these vectors back the other way (clockwise) by the angle \(\theta\). This inverse matrix “undoes” the original transformation.

      \begin{align*} C^{-1} &=\begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\[12pt] \sin(-\theta) & \cos(-\theta) \end{pmatrix} &= \begin{pmatrix} \cos\theta & \sin\theta \\[12pt] -\sin\theta & \cos\theta \end{pmatrix} \end{align*}

      In general, Inverses can be found by creating a matrix \([I][C]\) and then performing row reduction operations until we get the matrix \([C^{-1}][I]\)

      \begin{align*} \begin{pmatrix} 1 & 0 & \cos\theta & -\sin\theta \\[12pt] 0 & 1 & \sin\theta & \cos\theta \end{pmatrix} &\rightarrow \begin{pmatrix} \cos\theta & 0 & \cos^2\theta & -\sin\theta\cos\theta \\ 0 & \sin\theta & \sin^2\theta & \sin\theta\cos\theta \end{pmatrix} & \text{Multiply top row by \(\cos\theta\) and bottom row by \(\sin\theta\)} \\[12pt] &\rightarrow \begin{pmatrix} \cos\theta & \sin\theta & \cancelto{1}{\cos^2\theta + \sin^2\theta} & 0 \\ 0 & 1 & \sin\theta & \cos\theta \end{pmatrix} &\text{Add bottom row to top, divide bottom row by \(\sin\theta\)}\\[12pt] &\rightarrow \begin{pmatrix} -sin\theta\cos\theta & -\sin^2\theta & -\sin\theta & 0 \\ 0 & 1 & \sin\theta & \cos\theta \end{pmatrix}&\text{Multiply top row by \(-\sin\theta\)}\\[12pt] &\rightarrow \begin{pmatrix} \cos\theta & \sin\theta & 1 & 0 \\ -\sin\theta\cos\theta & \cancelto{\cos^2\theta}{1-\sin^\theta} & 0 & \cos\theta \end{pmatrix}&\text{Add top row to bottom. Divide top row by \(-\sin\theta\)} \\[12pt] &\rightarrow \begin{pmatrix} \cos\theta & \sin\theta & 1 & 0 \\ -\sin\theta & \cos\theta &0 & 1 \end{pmatrix} &\text{Divide bottom row by \(\cos\theta\)} \end{align*}

      \[C^{-1} = \begin{pmatrix} \cos\theta &\sin\theta\\ -\sin\theta&\cos\theta\\ \end{pmatrix} \]

      \(C\) is the matrix that rotates two-dimensional vectors counterclockwise through the angle \(\theta\). Notice that \(C^{-1}\) is just the matrix that rotates these vectors back the other way (clockwise) by the angle \(\theta\). This inverse matrix “undoes” the original transformation.

  4. Euler's Formula I S1 5409S
    1. Use Euler's formula \(e^{i\phi}=\cos\phi+i\sin\phi\) and its complex conjugate to find formulas for \(\sin\phi\) and \(\cos\phi\). In your physics career, you will often need to read these formula “backwards,” (i.e. notice one of these combinations of exponentials in a sea of other symbols and say, Ah ha! that is \(\cos\phi\)). So, pay attention to the result of the homework problem!

      \[e^{i\phi}=\cos\phi+i\sin\phi\] \[e^{-i\phi}=\cos\phi-i\sin\phi\]

      When these are added: \[e^{i\phi}+e^{-i\phi}=2\cos\phi\] \[\Longrightarrow \cos\phi=\frac{e^{i\phi}+e^{-i\phi}}{2}\] When they are subtracted: \[e^{i\phi}=\cos\phi+i\sin\phi\] \[-e^{-i\phi}=-\cos\phi+i\sin\phi\]

      \[\Longrightarrow e^{i\phi}-e^{-i\phi}=2i\sin\phi\]

      \[\Longrightarrow \sin\phi=\frac{e^{i\phi}-e^{-i\phi}}{2i}\]

    2. Show that Euler's formula:

      \[e^{i\phi} = \cos\phi +i \sin\phi\]

      is true, by comparing the power series for the various terms.

      \begin{align*} e^{i\phi} =& 1+i\phi+\frac{1}{2!}(i\phi)^2+\frac{1}{3!}(i\phi)^3+\frac{1}{4!}(i\phi)^4+\frac{1}{5!}(i\phi)^5+...\\ =& \left(1-\frac{1}{2!}\, \phi^2+\frac{1}{4!}\,\phi^4-...\right)+i\left(\phi-\frac{1}{3!}\,\phi^3+\frac{1}{5!}\,\phi^5+...\right)\\ =& \cos\phi+i\sin\phi \end{align*}