
Debugging Handout

Debugging is a skill that takes practice. There are a lot of different ways to debug a program, and
I’ll just talk through a few of them here, before giving you some buggy programs to practice fixing.

Syntax errors first Recognize if python is telling you that you have a syntax error, and look at
Syntax errors if you need help. But be encouraged that syntax bugs are always shallow, in that it’s just
a matter of finding the typo.

Comment out code If you’re not sure where an error is coming from (especially if it’s a syntax
error), it can help to comment out entire chunks of your code. In VS Code, you can do this by selecting
code an hitting ctrl-/. This can rule out whole swathes of code that is not causing the error.

Run early and often This is less helpful for the activity I’m giving you today, but run your code as
you write it, as soon as you have something that you don’t expect to have a syntax error. This lets you
catch bugs early, and gives you assurance that any new bug (esp. syntax errors) must be in the code
you just wrote, rather than in code you wrote ten minutes ago.

Read your code Make sure to read your code carefully (esp. if you didn’t write all of it yourself) to
determine what you think it should do. If it doesn’t do what you think it should do, then there is a bug
that you haven’t yet identified.

Add prints Adding calls to the print function allows you to test whether the code is doing what you
think it is doing (see above). Finding the first deviation from what you expect gives you a strong hint
as to where the bug might be.

Google for the error message Sometimes (but not always) searching for the error message will give
you a good hint as to what went wrong.

Read the line numbers in a crash message These numbers are often unhelpful with syntax errors,
but can be extremely helpful with runtime errors, as they tell you at which line of the code the problem
arose.

Read the documentation If a function isn’t having the effect you expect, try reading its documen-
tation. Python documentation can be challenging to read, so keep in mind that this is just one approach
to try.

Find example code If you’re trying to do something with matplotlib or numpy, it can help to find
a program that does something similar, and start with that program. This is often an effective fallback
when reading the documentation fails.

Don’t use a debugger It seems logical that a debugger would be useful for debugging. But they are
not that useful. There may be times in your life when a debugger would help, but I wouldn’t bet on it.
(If you don’t know what a debugger is, then you can ignore this.)

1

https://paradigms.oregonstate.edu/activity/822


Debugging Handout

Read your code out loud to your partner Slowly reading the code out loud and having another
person write down what it will do can catch persistent bugs. Our brains skip over things when we read
quickly, and slowing down and forcing yourself to read each character can really help.

Run your code by hand Step through like we did on the board, and run your code on paper. You
may find the bug, but you may also find values that you could print out, to test where things are going
awry.

Explain the code to someone This is kind of like reading the code, but at a higher level. Looking
through the code and explaining what it does can either reveal the bug to yourself, or it may be found
by your listener. This is one of my favorite approaches: I’ll get an undergraduate student or graduate
student into my office and talk through my buggy code, and frequently it reveals the issue.

1 Your tasks
I have several buggy pieces of code. Some have a comment indicating what they are intended to do,
and others should be clear from the code itself (e.g. a function named factorial should compute the
factorial).

1. Debug code 1.

2. Debug code 2.

3. Debug code 3.

4. Debug code 4.

5. Debug code 5.

6. Debug code 6.

7. Debug code 7.

2

/media/activity_media/debugging-1.py
/media/activity_media/debugging-2.py
/media/activity_media/debugging-3.py
/media/activity_media/debugging-4.py
/media/activity_media/debugging-5.py
/media/activity_media/debugging-6.py
/media/activity_media/debugging-7.py

	Your tasks

