Floating point arithmetic Handout

When we use numbers on our computers their values are (usually) stored in the IEEE 754 floating
point format. Usually you don’t need to know anything about this format, but occasionally it can cause
unexpected behavior. I'll just briefly describe what “floating point” even means, and then tell you about
a few properties of floating point numbers that may surprise you.

Floating point numbers use the equivalent of scientific notation, e.g. 1.464844 x 10~2. You will notice
that this number has two parts. The mantissa is the number 1464844, and the exponent is —2. On a
computer, these are stored in binary, so this number would look more like 15 x 271% with the mantissa
being 15 and the exponent being —10. However, to keep things efficient, there are a fixed number of bits
(like digits) that are used for the mantissa, and a fixed number of bits for the exponent. This means
that many real numbers cannot be represented exactly, including real numbers that can be represented
exactly in decimal notation.

Common gotchas:

roundoff error Numbers must be rounded to the nearest representable number after most (but not
all) arithmetic operations, so frequently you will find equations not quite as you would expect.
For instance 1.0 - 0.0001 + 0.0005 + 0.0005 == 1.0 gives a value of False. Roundoff error
makes comparing for equality with floating point numbers usually a mistake.

arange When using np.arange, you can see unpredictable results if your end value is an integer times
your step size.

infinity When dividing by zero with numpy arrays, you will get infinite values, which a special code
that indicates an infinite value.

zero = np.zeros(1)

inf = 1/zero

print (inf)

print(1/inf) # this gives us a well-defined result of 0
print (inf-inf) # this gives us an undefined result

NaN A NalN is 'Not a Number’, and is the value you get when you do a computation that has an
undefined result (unless Python crashes, which is possibly hard to predict). NaNs are strange
beasts that are unequal to themselves, and any arithmetic involving a NaN produces a NaN. The
most common origin of NaNs is probably taking the square root of a negative number.


https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Floating-point_arithmetic

