
Position operator Handout

1 Operators in quantum mechanics
(In case https://paradigms.oregonstate.edu/courses/ph425 hasn’t covered this yet.) An
operator in quantum mechanics corresponds to a linear transformation of a state (or ket). In a matrix
representation, an operator would be a matrix, and would transform a column vector to another column
vector by matrix multiplication. We represent operators with hats, such as Ŝz.

Any quantity that we could observe, like the spin or position of a particle has a corresponding
Hermitian operator. The eigenvalues of the operator corresponding to an obsevables are the set of
values that could be measured when that observable is measured. For instance, the z component of
the spin Ŝz for a spin-1

2
particle has eigenvalues of ±1

2
ℏ, which is why only those two spin values are

measured.
Any operator can be written as a matrix using any basis set (of the corresponding system). The

elements of that matrix, which represents the operator, are called matrix elements, and are given by
Oij ≡ ⟨i| Ô |j⟩, where |i⟩ and |j⟩ are two basis states, Ô is some operator, and Oij is an elment of the
matrix corresponding to that operator.

2 Operators on wave functions
A wave function represents the state of a particle in space, just as a ket or an array of two elements
represents the state of a spin-1

2
particle. Just as there are operators for spins that relate to physical

observables, there are also operators for particles in space, which act on wave functions.
We will be considering just one operator this week: the position operator. The position operator in

the wave function representation is given by

x̂ =̇ x (1)

You might have some trouble understanding what this means, given that the hat and the dot are both
new notations. I’ll try to explain element by element.

x̂ This is the operator corresponding to the classical observable x. When we write an operator with a
hat like this, we are being abstract in terms of what representation we are using. Warning! We
annoyingly use the same notation for a unit vector in the x direction in Cartesian
coordinates! This is unfortunate, but context should allow you to identify the meaning
of the hat.

=̇ This means that the thing on the left (which is representation-independent) can be represented (often
in a particular basis) by the thing on the right (which is specific to that representation/basis).

x This is the representation of the position operator in the wave function representation, which we
can also call the position basis, since it is the representation in which x̂ is represented by x. In
contrast, next quarter you will learn about a momentum basis, in which x̂ =̇ iℏ ∂

∂p
.

Last week we explored how we can represent a wave function in a sinusoidal basis. Today we will explore
how to represent the position operator in the sinusoidal basis. In order to do this, we will compute what
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is called a matrix element. The matrix element is defined by

xnm = ⟨n|x̂|m⟩ (2)

=

∫
ϕ∗
n(x)xϕm(x)dx (3)

and you can think it as one of the ”elements” that shows up in a matrix.

2.1 Why is this thing a ”matrix element”?
Recall that we started by finding the average position, which was

⟨x⟩ =
∫

P(x)xdx (4)

=

∫
|ψ(x)|2xdx (5)

= ⟨ψ|x̂|ψ⟩ (6)

You then found that you could write ψ(x) as a sum of basis functions

|ψ⟩ =
∞∑
n=1

Cn|n⟩ (7)

=
∞∑
n=1

⟨n|ψ⟩|n⟩ (8)

and thus

ψ(x) =
∞∑
n=1

Cnϕn(x) (9)

We can now put these two expressions together by substituting the expressions for ψ(x) into the expres-
sion for ⟨x⟩:

⟨x⟩ =
∫
ψ(x)∗xψ(x)dx (10)

=

∫ ( ∞∑
n=1

Cnϕn(x)

)∗

x

(
∞∑
n=1

Cnϕn(x)

)
dx (11)

At this point we run into a possible confusion. I’ve written down two summations with the same
summation index. This is a natural outcom of plugging in the equation for ψ(x), but we’ve now got two
different index variables with the same name. Whenever this happens to you, it’s a good idea to change
the equation to give them different names. Since we’re summing over them, these index variables are
”dummy indexes”, just as our integral variable x is a ”dummy variable” and could be renamed at will.
We could change one of them to n′ or we could change one of them to m. I’ll pick the latter.

⟨x⟩ =
∫ ( ∞∑

n=1

Cnϕn(x)

)∗

x

(
∞∑

m=1

Cmϕm(x)

)
dx (12)
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Now that we have different dummy variables for summation, we can pull reorder our summations and
pull them out of the integral

⟨x⟩ =
∞∑
n=1

∞∑
m=1

C∗
nCm

∫
ϕn(x)

∗xϕm(x)dx (13)

=
∞∑
n=1

∞∑
m=1

C∗
nCm⟨n|x̂|m⟩ (14)

=

(
C∗

1 C∗
2 C∗

2 · · ·
)

⟨1|x̂|1⟩ ⟨1|x̂|2⟩ ⟨1|x̂|3⟩ · · ·
⟨2|x̂|1⟩ ⟨2|x̂|2⟩ ⟨2|x̂|3⟩ · · ·
⟨3|x̂|1⟩ ⟨3|x̂|2⟩ ⟨3|x̂|3⟩ · · ·

... ... ... . . .



C1

C2

C2
...

 (15)

= ⟨ψ|x̂|ψ⟩ (16)

Thus we can see that the x̂ operator does seem to be represented in our sinusoidal basis as a matrix of
infinite dimension with its elements given by xnm = ⟨n|x̂|m⟩. Thus we can also write that

x̂ =̇


⟨1|x̂|1⟩ ⟨1|x̂|2⟩ ⟨1|x̂|3⟩ · · ·
⟨2|x̂|1⟩ ⟨2|x̂|2⟩ ⟨2|x̂|3⟩ · · ·
⟨3|x̂|1⟩ ⟨3|x̂|2⟩ ⟨3|x̂|3⟩ · · ·

... ... ... . . .

 (17)

meaning that in the sinusoidal basis the x position operator is represented by this matrix.

3 Your task
1. Write a function that given n and m solves for and returns ⟨n|x̂|m⟩. Please do your integrals

numerically. (Yes, these integrals can be done analytically, but that is a bit of a pain, and this is
a computational course.)

2. Create a matrix (or 2D array) for the position operator x̂. You’ll have to choose a maximum value
of n to make this a finite matrix. Please pick something practical, but reasonably big. This is
going to require that you index your array. In python, as with most programming
languages, arrays are indexed starting with zero, so the index you will put into the
array will be one less than the value of n that you mean.

3. Visualize this matrix with a color plot. Raise your hand when you have visualized the
position operator matrix! Try increasing the number of basis functions included. Does the
matrix seem to ”converge” like your wavefunctions did last week?

4 Your next task
Once you have a matrix (or 2D array) corresponding to the position operator in the sinusoidal basis,
we will want to determine the eigenstates and eigenvalues of the position operator. Those eigenstates
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can be expressed in more than one representation. Because the position matrix you construct is in
the representation of our sinusoidal basis set, the eigenvectors that you obtain will also be in that
representation.

x̂|vi⟩ = λi|vi⟩ (18)
⟨1|x̂|1⟩ ⟨1|x̂|2⟩ ⟨1|x̂|3⟩ · · ·
⟨2|x̂|1⟩ ⟨2|x̂|2⟩ ⟨2|x̂|3⟩ · · ·
⟨3|x̂|1⟩ ⟨3|x̂|2⟩ ⟨3|x̂|3⟩ · · ·

... ... ... . . .



vi1
vi2
vi3
...

 = λi


vi1
vi2
vi3
...

 (19)

|vi⟩ =
∞∑
n=1

vin|n⟩ (20)

vi(x) =
∞∑
n=1

vinϕn(x) (21)

1. Solve for the eigenvalues and eigenvectors of the position matrix (numpy has a function to do this).

2. Visualize a few of the eigenfunctions of the position operator. These eigenfunctions are given by

vi(x) =
∞∑
n=1

vinϕn(x) (22)

3. On the same graph (with the eigenfunctions) visualize the corresponding eigenvalues as vertical
lines. Raise your hand when you have visualized at least a couple of eigenfunctions of
the position operator along with their corresponding eigenvalues!

4. Try increasing the size of your matrix, and see how the eigenvalues and eigenfunctions change.
What do the eigenfunctions seem to be converging to?

Paper fun Solve analytically for the eigenstates of the position operator in a wave function represen-
tation. Compare them with your approximate numerical eigenstates above.
To do this, you’ll want to try picking a function, any function, and then sketch that function and
x times that function. If they look the same, you found the eigenfunction. Otherwise try again.

Solution Note that to solve this in a reasonable way (if you don’t already know the answer) it
is really important to be able to in a sketch multiply two functions. This is an invaluable skill,
and well worth practicing!
To do this, we can begin with any guess we want. The simplest is probably an n = 1 sinusoid.
We sketch

√
2
L
sin(πx/L), which has one symmetrical bump. If we multiply by x, we find that

the right-hand side gets bigger relative to the left-hand side. It’s not the same shape.
We can then pick another function, like you might try a function that is zero on the left-hand
side of the box, and is a sinusoid on the right-hand side:

f(x) =

{
0 x < L/2

− sin(2πx/L) x ≥ L/2
(23)
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This just looks like the previous function, but squished and scooted to the right. And I didn’t
bother normalizing it. If we multiply this function by x, again the right-hand side of the peak is
increased relative to the left-hand side, but now the distortion is not as big. Because we made
the peak skinnier, x had a smaller fractional change from one side to the other.
Moral of the story: a skinnier function (with zero elsewhere) will be closer to an eigenfunction
of x̂. We can continue this process, making the function skinnier and skinnier, until we have
a function that is non-zero at only one point in space. And the x value of that point in space
will be the eigenvalue. This gets us to the Dirac δ function, which is the eigenfunction of the
position operator. It’s not a well-behaved function, which is why I didn’t start with this.
Meaning of results You constructed a matrix that represents the x̂ operator in the sinusoidal
basis set. Doing this required computing matrix elements, which are kind of like inner products,
but have an operator sandwiched in the middle. numpy then solved for the eigenvalues and
eigenvectors of this matrix, which gave you an approximation for the eigenfunctions of the
position operator. These were only approximations, because we did not include all of the
infinite number of sinusoidal basis functions. When you looked at the eigenvalues, you may
have noticed that they are equally spaced from 0 to L. The eigenfunctions of x̂ are functions
that have a single well-defined position, which well-describes the Dirac δ function.
We can show that δ(x− x0) is an eigenfunction of x because

xδ(x− x0) = x0δ(x− x0) for all x (24)

thus δ(x− x0) is an eigenfunction of x̂ with eigenvalue x0.
Extra-advanced subtlety (not needed, skipped in lecture!) You might wonder about
normalization. It would be natural to expect the eigenfunction to be normalized, which would
lead to an expression like

xvi(x) = xivi(x) (25)
1 = ⟨vi|vi⟩ (26)

=

∫ L

0

vi(x)
∗vi(x)dx (27)

This would lead us to conclude that vi(x) =
√
δ(x− xi). This is incorrect, however, although

it is a mistake that faculty also make sometimes. The problem with this statement is that we
actually need to normalize the eigenfunctions differently when working with a continuous basis
like this.
The problem with the above is that we cannot write a discrete sum over all the basis functions
in this case, as we were able to do before. Instead we are forced to use an integral over all the
basis function, and that changese the dimensions that are needed.
In a discrete basis set, we write

|ψ⟩ =
∑
n

Cn |n⟩ (28)

and we “multiply” (with an inner product) each side by ⟨n′| on the left to find

⟨n′|ψ⟩ =
∑
n

Cn ⟨n′|n⟩ (29)
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Then we can use the orthonormality of the basis to write the right-hand inner product as a
Kroenecker delta and kill the sum:

⟨n′|ψ⟩ =
∑
n

Cnδnn′ (30)

⟨n′|ψ⟩ = Cn′ (31)

Why did I do all this? To give an example of how we use basis functions, since one use for
eigenfunction is often to form a useful basis set.
When doing the same process with x̂ eignefunctions, we run into some trouble: because x varies
continuously, we cannot write a sum over all possible x. Between any two x (that are not equal
to one another) there are an infinite number of other x values. So instead of a sum, we are
forced to use an integral:

|ψ⟩ =
∫
Cx |x⟩ dx (32)

where I am taking |x⟩ to mean the eigenfunction that has eigenvalue x, and Cx to be the
corresponding coefficient. We can proceed as we did in (29):

⟨x′|ψ⟩ = ⟨x′|
∫
Cx |x⟩ dx (33)

=

∫
Cx ⟨x′|x⟩ dx (34)

At this point we need to think about what ⟨x′|x⟩ is. In (30) we treated an inner product
like this as a Kronecker delta (which indicated orthonormality), but a Kronecker delta requires
that the two indices be integers. The corresponding quantity here is a Dirac δ function, i.e.
⟨x′|x⟩ = δ(x− x′), which would result in

⟨x′|ψ⟩ =
∫
Cxδ(x− x′)dx (35)

= Cx′ (36)

That looks promising (and a little familiar), but it also means that our |x⟩ must not be
normalized. If we had chosen to normalize our |x⟩ we would have run into trouble. This
⟨x′|x⟩ = δ(x− x′) also relates to the dimensions of |x⟩, since the delta function has dimensions
of inverse distance means that |x⟩ must have different dimensions from |ψ⟩, which is distinctly
weird.
Completeness relation

1 =

∫
|x⟩ ⟨x| dx (37)
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