

1. Let $x + 3y - z = 2$.

- Write down $d\vec{r}$ for the surface and use what you know to express it in two variables.
- If one variable is constant, then write down $d\vec{r}$ in that case. Label this vector $d\vec{r}_1$.
- Describe the vector you obtained above geometrically in relation to the surface.
- If the other variable is constant, then write down $d\vec{r}$ in that case. Label this vector $d\vec{r}_2$.
- Compute $d\vec{r}_1 \times d\vec{r}_2$. This is $d\vec{S}$, the two-dimensional analogue of $d\vec{r}$.
- Is $d\vec{S}$ tangent to the surface?

2. Consider the surface defined by $z = 3 - y^2$.

- Sketch the surface and describe its normal vector both verbally and graphically.
- Construct $d\vec{S}$ as above.
- Do you think $d\vec{S}$ is normal to the surface?

3. Let M be the surface defined by $x^2 + y^2 = 3$ where $1 \leq z \leq 3$.

- Sketch M . It includes the ends.
- Construct $d\vec{S}$ for M .
- Include $d\vec{S}$ in your sketch.