

1. Let Φ be the surface consisting of $z = 3 - y^2$ above the xy -plane and the bounded portion of the xy -plane where $-2 \leq x \leq 2$ and $-\sqrt{3} \leq y \leq \sqrt{3}$.
 - Set-up (an) integral(s) that determines the flux of $-x\hat{\mathbf{x}} - y\hat{\mathbf{z}}$ through Φ .
 - Draw a picture depicting how one could employ the divergence theorem to compute the flux.
 - Carry out the calculation displayed by the picture.
2. Let S be the sphere of radius 2 inches.
 - Construct a surface integral that represents the flux of $-x\hat{\mathbf{x}} - y\hat{\mathbf{y}} - z\hat{\mathbf{z}}$ through S .
 - Construct a triple integral that is equivalent to the flux integral you constructed.
 - Which is easier to compute?
3. Consider the cylinder Σ defined by $y^2 + z^2 = 5$ and $2 \leq x \leq 5$ excluding the ends.
 - Construct a surface integral representing the flux of $x\hat{\mathbf{x}} - (y^2 + z^2)y\hat{\mathbf{y}} - (y^2 + z^2)z\hat{\mathbf{z}}$ through Σ .
 - Use the Divergence Theorem to convert the surface integral into a triple integral.
 - Use a diagram to indicate your method of applying the Divergence Theorem.
 - Compute one of the integrals you've constructed.