

One of the pathways for hydrogen fusion involves the following reaction:

1. How much kinetic energy does a deuterium nucleus need to fuse with a tritium nucleus? *Note: for a course-grained approximation, you may assume that the tritium is fixed in position and the deuterium speeds toward it.*
2. If the deuterium is in a gas, what temperature should the gas be so that most deuterium has enough kinetic energy for fusion?
3. **Extra** Based on the masses of deuterium (^2H) and tritium (^3H), and given that one neutron will be produced, how much energy will be generated when they fuse?

isotope	mass
^2H	2.0141 u
^3H	3.01605 u
^4He	4.0260 u
^1n	1.0087 u

4. **Extra** What mass of deuterium + tritium would need to be fused to provide the electrical power the United States uses in a day?¹

¹The electrical power use of the US is about 10^{12} J/s.