

Starting equations from this class **Equations with an asterisk were not prominently featured in homework, and are key formulas for understanding course content, but will not be required for the exam.*

$\Delta U = Q + W$	First Law (energy flow diagrams)	(1)
$\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} \geq 0$	Second Law	(2)
$W = - \int pdV$	work from a pV diagram	(3)
$\Delta S = \frac{Q}{T}$	if temperature is held constant	(4)
$\frac{1}{T} = \frac{dS}{dU}$	definition of temperature*	(5)
$S = k_B \ln \Omega$	entropy from number of microstates*	(6)
$pV = Nk_B T$	ideal gas only!	(7)
$\frac{W_{\text{net}}}{Q_{\text{in}}} \leq 1 - \frac{T_C}{T_H}$	efficiency of heat engines	(8)
$C_V = \frac{dU}{dT}$	heat capacity	(9)
energy per degree of freedom = $\frac{1}{2}k_B T$	equipartition	(10)
if $\frac{1}{2}k_B T \ll \Delta E$	can ignore that degree of freedom	(11)
if $\frac{1}{2}k_B T \gg \Delta E$	can use equipartition	(12)
$E_{\text{photon}} = \hbar\omega = \Delta E_{\text{system}}$	quantum spectra	(13)
$p = \frac{h}{\lambda} = \frac{2\pi\hbar}{\lambda}$	momentum and wavelength	(14)
$E_{\text{light}} = p_{\text{light}}c$	momentum of light	(15)
energy/time/area	intensity of light	(16)
$I = \sigma T^4$	Stefan-Boltzmann Law	(17)
spectral intensity S_λ	the intensity per wavelength	(18)
$\lambda_{\text{peak}} = \frac{b}{T}$	Wien's displacement law*	(19)

Course content that will be provided if required

- Boundary conditions for pipes etc.
- Energy level formulas for quantum systems
- An equation for spectral intensity

Course content that will not be on the exam *These topics were discussed in class, but did not appear on homework, and therefore will not appear on the exam.*

- Differential equations for waves
- Optical depth and cross section

Starting equations from previous classes

$$K.E. = \frac{1}{2}mv^2 \quad (20)$$

$$U = mgh \quad \text{for gravity near the surface of Earth} \quad (21)$$

$$U = k_C \frac{q_1 q_2}{r_{12}} \quad \text{for two point charges} \quad (22)$$

$$p = mv \quad \text{nonrelativistic particle} \quad (23)$$

$$v = \lambda f \quad \text{for a wave} \quad (24)$$

$$\omega = 2\pi f \quad \text{angular versus normal frequency} \quad (25)$$

$$\text{density} = \frac{m}{V} \quad (26)$$

$$\text{number density} = \frac{N}{V} \quad (27)$$

$$Q = mc\Delta T \quad \text{specific heat capacity} \quad (28)$$

Useful constants

$$k_B \approx 1.4 \times 10^{-23} \quad \text{Boltzmann's constant} \quad (29)$$

$$k_C \approx 9 \times 10^9 \text{ J m/C}^2 \quad \text{Coulomb constant} \quad (30)$$

$$e \approx 1.6 \times 10^{-19} \text{ C} \quad \text{charge of electron} \quad (31)$$

$$\text{eV} \approx 1.6 \times 10^{-19} \text{ J} \quad \text{an electron volt} \quad (32)$$

$$\hbar \approx 10^{-34} \text{ J s} \quad \text{Plank's constant} \quad (33)$$

$$c \approx 3 \times 10^8 \text{ m/s} \quad \text{speed of light} \quad (34)$$

$$m_e \approx 10^{-30} \text{ kg} \quad \text{mass of electron} \quad (35)$$

$$m_e c^2 \approx 0.5 \text{ MeV} \quad \text{mass of electron (relativistic version)} \quad (36)$$

$$u \approx 1.7 \times 10^{-27} \text{ kg} \quad \text{atomic mass unit} \quad (37)$$

$$hc \approx 1240 \text{ nm eV} \quad \text{a convenient combination} \quad (38)$$

$$N_A \approx 6 \times 10^{23} \text{ things/mol} \quad \text{Avogadro's number} \quad (39)$$

$$\sigma \approx 6 \times 10^{-8} \frac{\text{J}}{\text{s} \cdot \text{m}^2 \cdot \text{K}^4} \quad \text{Stefan-Boltzmann constant} \quad (40)$$