
Global and local variables Handout

In your pairs, please run the following code by hand on your big whiteboards (or paper), to predict
what it will print

i = 1
def factorial(n):

i = n
product = 1
while i > 0:

product = product * i
i = i - 1

print('inside factorial i is', i)
return product

print('i starts as', i)
print('factorial is', factorial(3))
print('i ends as', i)
print('product is', product)

The above program will actually print:

i starts as 1
inside factorial i is 0
factorial is 6
i ends as 1
error message: product is undefined

Many of you may have expected it to print i is 0 both of the last two times. This difference relates
to the scoping rules for variables. In this program there are actually two variables named i. One is
the global variable whose value is 1 throughout the program. The other is a local variable that is
created when the function is called, whose value is changed during the computation of the factorial.

When a function is called, python creates new local variables for each variable that is assigned to in
the function. When the function returns, all of these variables are erased. This may feel like weird and
unintuitive behavior, but it is crucial for allowing larger programs to be read successfully. In particular,
it means:

1. You can understand a function by reading just that function in isolation, provided it doesn’t use
any variables that are neither input parameters nor initialized within the function itself.

2. If you know what a function does, you don’t need to worry about how it does it. You don’t need
to be concerned that you might accidentally use the same variable name that is unsed inside of
some function and get messed up because your variable got modified by the function. This is
huge!

3. By the same token, when writing a function, you don’t need to worry whether some variable name
might be used elsewhere in the code. This is huge!

1

Global and local variables Handout

Let’s run as a class
x = 1
hi = 'Greetings fellow humans!'
def sqrt(x):

print('inside sqrt x is', x)
lo = 0
hi = x
while hi - lo > 0.2:

print(lo, '< root x <', hi)
mid = (lo + hi)/2
if mid*mid > x:

hi = mid
else:

lo = mid
return (hi + lo)/2

print(hi)
print('x starts as', x)
print('sqrt(2) is', sqrt(2))
print('x ends as', x)
print(hi)

Try running by hand
x = 1
def sqrt(x):

print('inside sqrt x is', x)
return x**0.5

print('x starts as', x)
print('sqrt(5) is', sqrt(5))
print('x ends as', x)

Try running by hand
i = 1
def factorial(n):

product = 1
while i <= n:

product = product * i
i = i + 1

print('inside i is', i)
return product

print('i is', i)
print('3! is', factorial(3))
print('i is', i)
Then try running using the computer, copying this code into an entirely new file.

2

Global and local variables Handout

Try running by hand

i = 1
def factorial(n):

product = 1
for i in range(1, n+1):

product = product * i
print('inside i is', i)
return product

print('i is', i)
print('3! is', factorial(3))
print('i is', i)

Then try running using the computer, copying this code into an entirely new file.

3

