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Runge-Kutta methods

In this activity we will solve an initial value differentail equation by various explicit methods and
compare them with each other.

Let us first establish a common language. A first order ordinary differental equation is an equation
of the form

dy

dx
= f(x, y) (1)

These problems have as solution a mathematical function y(x) and can be solved numerically (and
sometimes analytically) when the initial condition y(x0) is known. In this activity we will use an
explicit method (i.e., a numerical method that constructs the solution at a further position x̄ +∆x by
knowing the properties at the position x̄).

A first approach, known as the Euler method, is that of using the first derivative at a position x̄ to
predict the value of the mathematical function y at a further position x̄+∆x.

One can write:
y(x̄+∆x) = y(x̄) +

dy

dx

∣∣∣∣
x=x̄

∆x (2)

Armed with this equation, once we have tabulated an array of positions {xi}i=0...n, we can write a
simple for loop and compute

yi+1 = yi + f(xi, yi)(xi+1 − xi) (3)
Notice that all the quantities on the right hand side are known and therefore the value of y at the

advanced position can be calculated.
You may also have noticed that Equation (2) looks a lot like a Taylor series truncated at the first

order. For that reason the Euler method is called a ”first order” method.
We have learned in our previous activity that the more terms we add to the series, the more precise

is the approximation. Fortunately, that can be extended to the solution of differential equations. Let
us, for example, devise a second order method. From the Taylor series we have:

y(x̄+∆x) = y(x̄) + y′(x̄)∆x+
y′′

2
(x̄)∆x2 (4)

we do not know directly y′′(x), but we know that

y′′(x) =
df ′(x)

dx
=

d

dx
f(x, y) =

∂f

∂x
+

∂f

∂y
f (5)

This may not seem great progress, since we do not know the partial derivatives of f . However, it
can be shown that this is equivalent to calculating y(x̄+∆x) as:

y(x̄+∆x) = y(x̄) + (k1 + k2)
∆x

2
(6)

where

k1 = f(xi, yi) (7)
k2 = f(xi +∆x, yi + k1∆x) (8)
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A very commonly used ethod is the 4th order method (RK4) that uses:

y(x̄+∆x) = y(x̄) + (k1 + 2k2 + 2k3 + k4)
∆x

6
(9)

where
k1 = f(xi, yi) (10)
k2 = f(xi +∆x/2, yi + k1∆x/2) (11)
k3 = f(xi +∆x/2, yi + k2∆x/2) (12)
k4 = f(xi +∆x, yi + k3∆x) (13)

Activity We will consider the differential equation
y′ = xy (14)

and the initial condition:
y(0) = 1 (15)

We know the analytical solution of this equation:

y(x) = e
x2

2 (16)

1. Write a python script that tabulates and plot the analytical solution for x ∈ [0, 5].

2. Add a block that uses the Euler method to compute the numerical solution. Use ∆x = 0.1. Plot
the Euler (1st order solution) in the same graph. Add a legend.

3. Repeat the previous step but use a second order RK method.

4. Same as above but with RK4.

Questions to address during presentations:
1. How would you test accuracy of the solution if there is no known analytical result for the differential

equation?

2. Is having a fixed step a necessity? Can a variable step be used?
Challenging:
1. Find three values of ∆x that, used with Euler, RK2, and RK4, give solutions of the same accuracy.

2. Add time flags to your code and compare the run times of the three methods. Which is the faster
to achieve the given accuracy?

3. Code an implicit method and compare the solution you get.
Physical equations:

• [Velocity of falling object with drag]: dv
dt

= −g + av + bv2, where a < b are constants (pick
your own)

• [Number of atoms of a decaying isotope]: dN2

dt
= N1

τ1
e
− t

τ1 − N2

τ2
e
− t

τ2 where N1 ≫ 1 is the
number of atoms of a parent species and τ1 and τ2 the decay times (pick your own).
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