

1. Let S be the plane $5x - y - z = 1$ over the region $0 \leq x \leq 2$ and $0 \leq y \leq 2$ oriented upward.
 - Construct $d\tilde{\mathbf{S}}$ for this surface.
 - Compute the surface integral $\iint_S \tilde{\mathbf{F}} \cdot d\tilde{\mathbf{S}}$ where $\tilde{\mathbf{F}} = 3\hat{\mathbf{x}} + z\hat{\mathbf{z}}$
2. Let Ω be the surface defined by $g(x, y) = \frac{2}{1+x^2+y^2}$ over the region $x^2 + y^2 \leq 5$ oriented upward.
 - Construct $d\tilde{\mathbf{S}}$ for Ω .
 - Let $\tilde{\mathbf{G}} = z\hat{\mathbf{z}}$. Compute $\iint_{\Omega} \tilde{\mathbf{G}} \cdot d\tilde{\mathbf{S}}$.
3. In spherical coordinates, $d\tilde{\mathbf{r}} = dr\hat{\mathbf{r}} + rd\theta\hat{\theta} + rsin\theta d\phi\hat{\phi}$. Note that r is three-dimensional and θ is measured from the z -axis.
 - On the sphere of radius two, which variable(s) is(are) constant? That means the differential is what?
 - Construct two tangent vectors to the sphere and use them to obtain an outward-pointing normal vector.
 - How can you be sure that it's normal to the sphere?
 - Compute the flux of $\tilde{\mathbf{H}} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$ outward through the sphere of radius two.