Discrete Superposition of Energy Eigenstates of the Free Particle Handout

Consider a quantum state for a free particle with mass m that, at ¢ = 0, is a superposition of

three different energy eigenstates: 1, (), Vpo+op(2), and ¥p,_sp(z). Let the probabilities be 1, 1, 1,
respectively.

1. Write down the state in wavefunction at ¢ = 0. (don’t do any simplification yet).
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2. What is the shape of this wavefunction? Use your favorite plotting software to graph the real and

imaginary parts of this wavefunction. To graph the function, you’ll have to pick a numerical value
for py and dp.

Solution I'll choose &2 = 2 and ép = 0.1 and I won’t worry about the constant out from
except the probability amplitudes:

1 1 1
Re(v) = 7 cos 2z + 5 c08 2.1x + 5 cos 1.9z
Im(¢) =0.7sin2x + 0.5sin 2.1z + 0.5sin 1.9z
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3. At this stage, try to reorganize/simplify your wavefunction by factoring out v, (z).

Solution

4. What will the state be at a later time t? (don’t do any simplification yet).

Solution Starting with the energy eigenstate expansion, add a time-dependent phase to each
term, using the time evolution formula:

U(z,t) = Z qu(x)e_iETmt



Discrete Superposition of Energy Eigenstates of the Free Particle Handout

So we have:
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5. At this stage, try to reorganize your wavefunction by factoring out v, (z,t).

Solution
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Here we let all factors of dp of power greater than 1 (in red) go to 0.
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The velocity in blue is the velocity of the carrier wave and the velocity in red is the velocity
of the envelope. Note: the velocity of the envelope matches the velocity I would expect for a
classical particle.

Now we use Euler’s identity for Cosine: cos(kx) =

1 ip—o(x—%t)
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