Power Series Solution of ODEs: Math Example Handout

Use power series methods to find the general solution of

(dd— - 4) ylo) =0 1)

around the point x = 0.

Solution Ansatz: Assume a power series solution. Since we are asked to expand around the point
xo = 0, we choose powers of v — z¢g = x, i.e. let

y=co+cr+cx’ +er’ + ... (2)
d
%y=0+01x0+202x1+303x2+... (3)
d2
@y:0+0 +2621’0—|—3-263$1—|—... (4)

Plug these expressions into the differential equation.

0= +2co +3 - 2c3 + ... (6)
—A(cy + c1z+cx® + 3 +..) (7)
(8)

The first row in this expression comes from the second derivative term and the second row comes
from the term proportional to y. Now, the goal is to add together all the terms with the same power
of x. To do this, it is necessary to shift one row with respect to the other.

0= = +2c0+3-2c37 + ... (9
— A(cog+ 1z + cor® +c3x® + .. .) (10
=2c0+3-2c3x+ ... (1
— Acy + Ay + Acox® + Acsa® + . .. (12
= (2c0+ Aco) + (3-2¢c5 + Acy)z + . .. (13

—_
— — — — ~—

Now utter the magic words: “Since this equation must be equal to zero for all values of x, the
coefficients of each power of x must separately be equal to zero.” Thus, we obtain:

A
2co + ACO =0=c = ECO (14)
A
3:2c5—Acy =0=c3= 3.3 etc. (15)
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Solution "Dummy” index method (Use expressions in terms of an infinite sum):
Ansatz: Assume a power series solution. Since we are asked to expand around the point zy = 0,
we choose powers of © — x¢ = z, i.e. let

y= i Cm"™ (16)
m=0

d o0
Ey: Zcmmxm_l (17)

da:z y = Z cmm(m—1)x (18)
(19)

Plug these expressions into the differential equation.
Shift the “dummy” index on some of the sums so that each sum contains the same power of x.

0= Z cmm(m —1)zm 2 —A Z ™ (20)
m=0 , m=0
let m = m+2
= Z Cmao (M +2)(m+ 1) AZcmx (21)
m~+2=0

— 02—~ 1)+ (1 — 0) (11 Zcmﬁ (m +2)(m + 1) AZcmx (22)

=0

= [emia (m+2)(m +1) — Acy] 2™ (23)
m=0

Now utter the magic words: “Since this equation must be equal to zero for all values of x, the
coefficients of each power of x must separately be equal to zero,” i.e. the recurrence relation is given

by:

A
m+2)(m+1)

Cm+2 = ( Cm (24>

Solution Using the recurrence relation:
Now, by plugging in successive values of m, we can recursively find values for the unknown

coefficients ¢,,. For example, when we plug in m = 0, we obtain

A

2

Cy = Cop.
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However, when we plug in m = 2, we obtain

Co (25)
Co (26)

Recursively means that we just found ¢4 in terms of ¢y, but we can then use the previous result to
write ¢4 in terms of cg.

Notice that I did NOT multiply out the factors in the denominator. I do this so that I have
a better chance of identifying a pattern in the coefficients. It is common to get factorials in the
denominator, as you can see emerging in this case.

Also notice that we started with a second order differential equation, so we expect two linearly
independent solutions, each multiplied by an overall constant. There is nothing in our solution so far
that tells us the value of ¢y or ¢;, so these two constants will become the overall constants for the
solution.

Also notice that the recurrence relation (@) contains only ¢,,.2 and ¢,,, and does not contain ¢, 1,
i.e. it skips a step. This behavior is common in applications, but by no means always true! When
this does happen, if you are expanding around x = 0, then the solutions will be pure even or pure
odd functions of x. The physical situation should also reflect this symmetry.

Solution The coefficients:
The first few coefficients that we get are:

co = Co (27)
A
CQ—ﬂCO (28)
A2
C4——4'3.2.1CO (29)
A3
= 6.5.4.3.2.1° (30)
(31)
CiT = (C (32)
A
C3—3.2.161 (33)
A2
— 4
©“T54.3.2.1° (34)
A3
— 35
T 76.5.4.3.2.1" (39)
(36)
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Leading to the approximate solutions:

A A2 A A3 )
?J(I)—Co<1+2.1x +4‘3'2_1x +6'5.4‘3.2_1x + ... (37)
A? A3
1 3 5 7 “ ..
+Cl(x+3'2'1x+5-4-3-2-1x+7.6.5.4.3.2,1I+ ) (38)
:C()COSh(\/ZZE)—f—iSinh(\/ZJ]) (39)

VA

In this particularly simple case, you may be able to recognize the series for hyperbolic sine and cosine.
More typically, you will not be able to “sum the series,” i.e. recognize the series in terms of known
functions. If you were able to recognize the series, likely you would have been able to solve the
problem using simpler methods than power series solutions.

Note that if A is a positive real number, we could rearrange the two solutions above to get
two exponential solutions (while losing information about which solution is even or odd). If A is a
negative real number, we could factor the minus sign out of the square root as 4 and rearrange the
two solutions above to get sines and cosines.



