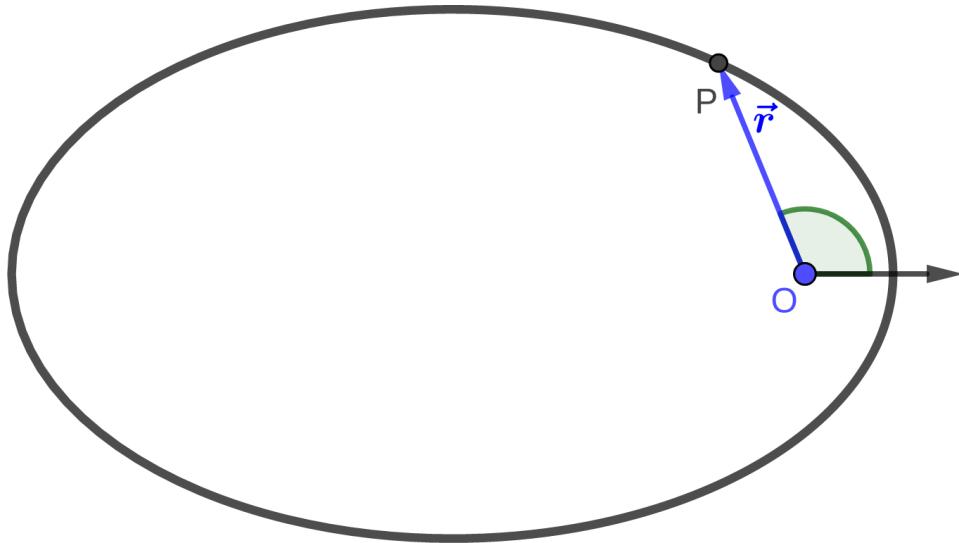
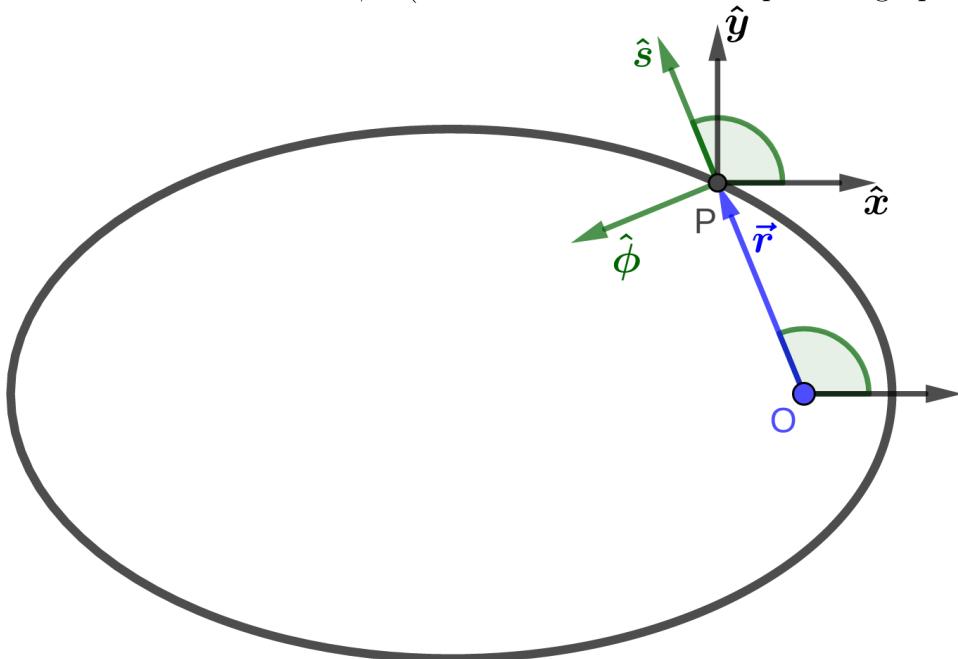


1. On the figure below, draw \hat{s} and $\hat{\phi}$ at P .



2. Find $\frac{d}{dt} \hat{s}$ and $\frac{d}{dt} \hat{\phi}$ in terms of \hat{s} and $\hat{\phi}$.

Solution First use the figure below to write \hat{s} and $\hat{\phi}$ in terms of \hat{x} and \hat{y} which do not change with position or time by drawing the four basis vectors all at point P and reading off the coefficients of \hat{s} and $\hat{\phi}$. (See also the online manipulable graphic version of this figure.)



$$\begin{aligned}\hat{s} &= +\cos \phi \hat{x} + \sin \phi \hat{y} \\ \hat{\phi} &= -\sin \phi \hat{x} + \cos \phi \hat{y}\end{aligned}$$

Then differentiate, using the fact that \hat{x} and \hat{y} are constant. Reinterpret the answers using the formulas for \hat{r} and $\hat{\phi}$.

$$\begin{aligned}\dot{\hat{s}} &= -\sin \phi \dot{\phi} \hat{x} + \cos \phi \dot{\phi} \hat{y} \\ &= \dot{\phi} (-\sin \phi \hat{x} + \cos \phi \hat{y}) \\ &= \dot{\phi} \hat{\phi} \\ \dot{\hat{\phi}} &= -\cos \phi \dot{\phi} \hat{x} - \sin \phi \dot{\phi} \hat{y} \\ &= \dot{\phi} (-\cos \phi \hat{x} - \sin \phi \hat{y}) \\ &= -\dot{\phi} \hat{s}\end{aligned}$$

3. Find \vec{v} in terms of \hat{s} and $\hat{\phi}$.

Solution

$$\begin{aligned}\vec{v} &= \frac{d\vec{r}}{dt} \\ &= \frac{d}{dt} s \hat{s} \\ &= \frac{ds}{dt} \hat{s} + s \frac{d\hat{s}}{dt} \\ &= \dot{s} \hat{s} + s \dot{\phi} \hat{\phi}\end{aligned}$$

For more details, please see these lecture notes.