
Series Solutions of Legendre’s Equation Handout

Use the power series method to solve Legendre’s Equation
d2P

dz2
− 2z

1− z2
dP

dz
− A

1− z2
P = 0 (1)

Solution Assume that the solution can be written as a Taylor series

P (z) =
∞∑
n=0

an z
n (2)

and solve for the coefficients an. Then we have

dP

dz
=

∞∑
n=0

an n zn−1 (3)

d2P

dz2
=

∞∑
n=0

an n(n− 1) zn−2 (4)

Multiply (1) by 1 − z2 to clear the denominators from the differential equation and then plug in
(2)-(4) to obtain

0 =
∞∑
n=2

an n(n− 1) zn−2 − z2
∞∑
n=0

an n(n− 1) zn−2 (5)

− 2z
∞∑
n=0

an n z
n−1 − A

∞∑
n=0

an z
n (6)

We are free to choose the lower limit in the first sum to be 2 instead of 0 since the n = 0, 1 terms are
zero because of the factor of n(n− 1).

In (6), the summation variable n is a dummy variable (just like a dummy variable of integration).
Therefore, in the first sum, we can shift n → n + 2. Pay special attention to what this does to the
lower limit of the sum. At the same time, bring any overall factors of z into the corresponding sums.
Finally, since each sum now has a factor of zn and runs over the same range, group the sums together.

0 =
∞∑
n=0

an+2 (n+ 2)(n+ 1) zn −
∞∑
n=0

an n(n− 1) zn

− 2
∞∑
n=0

an n z
n − A

∞∑
n=0

an z
n (7)

=
∞∑
n=0

[an+2 (n+ 2)(n+ 1)− an n(n− 1)− 2 an n− Aan] z
n (8)

Now comes the MAGIC part. Since (8) is true for all values of z, the coefficient of each term in
the sum (i.e. the expression in the square brackets) must be equal to zero for each separate value of
n, i.e.

an+2 (n+ 2)(n+ 1)− an n(n− 1)− 2 an n− Aan = 0 (9)
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and therefore we can solve for an+2 in terms of an

an+2 =
n(n+ 1) + A

(n+ 2)(n+ 1)
an (10)

The recurrence relation (10) allows us to find a2, a4, etc. in terms of the arbitrary constant a0 and
also to find a3, a5, etc. in terms of the arbitrary constant a1. Thus, for the second order differential
equation (1) we get two arbitrary coefficients, as expected.

In general, the solutions of an ordinary linear differential equation can blow-up only where the
coefficients of the equation itself are singular, in this case at z = ±1, which correspond to the north
and south poles θ = 0, π. But there is nothing special about physics at these points, only the choice
of coordinates is special there. Therefore, we want to choose solutions of (1) which are regular (non-
infinite) at z = ±1. This is an important example of a problem where the choice of coordinates
for a partial differential equation end up imposing boundary conditions on the ordinary differential
equation which comes from it. But polynomials cannot blow-up on the interval −1 ≤ z ≤ 1. So if we
choose the special values for the separation constant A to be A = −ℓ(ℓ+1) where ℓ is a non-negative
integer, we see from (10) that for n ≥ ℓ the coefficients become zero and the series terminates. The
solutions for these special values of A are polynomials of degree ℓ, denoted Pℓ, and called Legendre
polynomials.

Notice that the differential equation

d2P

dz2
− 2z

1− z2
dP

dz
+

ℓ(ℓ+ 1)

1− z2
P = 0 (11)

is a different equation for different values of ℓ. For a given value of ℓ, you should expect two solutions
of (11). Why? We have only given one. It turns out that the “other” solution for each value of ℓ is
not regular (i.e. it blows up) at z = ±1. In cases where the separation constant A does not have the
special value l(l + 1), it turns out that both solutions blow up. We discard these irregular solutions
as unphysical for the problem we are solving.
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