
Quantum Particle on a Unit Sphere in Dirac Notation Handout

Consider the state of a particle of mass µ confined to a unit sphere (a rigid rotor)

|ψ1⟩ = − 1√
2
|2, 1⟩+ 1√

2
|2,−1⟩

Whenever appropriate, state explicitly the quantum postulate(s) that justify your predictions and cal-
culations for each question.

1. If you measure the z-component of the angular momentum, what are the possible values you could
obtain with nonzero probability? What are the probabilities for these measurements?

Solution We could obtain Lz = ℏ,−ℏ, this is because Lz goes with the quantum number m
and we see m = 1 and −1 represented in the kets in our given state.
We can just read off the coefficents of the kets and take the norm sqaure of them to get the
probabilities:

P (Lz = ℏ) =
∣∣∣∣− 1√

2

∣∣∣∣2 = 1

2

P (Lz = −ℏ) =
∣∣∣∣+ 1√

2

∣∣∣∣2 = 1

2

2. If you measure the square of the angular momentum, what are the possible values you could obtain
with nonzero probability? What are the probabilities for these measurements?

Solution Here we can only measure L2 = 6ℏ2 since ℓ is the quantum number we care about
and we only see ℓ = 2 represented in our state. Therefore, we know we will always get L2 = 6ℏ2,
but we could also add two probabilities from each ket together.

3. If you measure the energy, what are the possible values you could obtain with nonzero probability?
What are the probabilities for these measurements?

Solution Remember H = L2

2I
= ℓ(ℓ+1)ℏ2

2I
, so we end up with the same probabilties as we get

for L2 on the sphere. We only have kets giving energy measurements of E2 =
6ℏ2
2I

, and simialrly,
we get it with 100% probability.

4. Calculate the expectation values of the observables for L̂z, L̂2, and Ĥ.

Solution For H and L̂2, we only have 1 measurement, so we know:

⟨Ĥ⟩ = 6ℏ2

2I〈
L̂2

〉
= 6ℏ2

For L̂Z , we need to sum the probabiltities times the measurements:

⟨L̂z⟩ =
∑
m

Pm(mℏ) =
1

2
(ℏ) +

1

2
(−ℏ) = 0

1
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5. What is the wavefunction for the same particle at an arbitrary time t?

Solution Since our state is already expressed in terms of eigenstates of the Hamiltonian of
the Sphere, we can just apply the time evolution formula (A.K.A. add the complex exponentials
next to each ket):

|ψ1(t)⟩ = − 1√
2
e−i6ℏt |2, 1⟩+ 1√

2
e−i6ℏt |2,−1⟩

Since all kets have the same energy, we can recognize these complex coefficents represent an
overall phase change as time evolves.

6. How will your answers to the questions 2-5 change with time?

Solution None of them will change since our time evolution is the same for both kets, we end
up with an overall phase difference not a relative one, and because of that, our probabilities
will not change with time.

Repeat all of the questions above for the state:

|ψ2⟩ =
√
3

2
e

iπ
3 |2, 1⟩+ 1

2
|3, 1⟩

Solution The non-zero probabilities and measures they corespond to for each are:

P (Lz = ℏ) = 1

P (L2 = 6ℏ2) =
3

4

P (L2 = 12ℏ2) =
1

4

P

(
H =

6ℏ2

2I

)
=

1

4

P

(
H =

12ℏ2

2I

)
=

1

4

Our expectation values are:
⟨L̂z⟩ = ℏ

⟨L̂2⟩ = 3

4
(6ℏ2) +

1

4
(12ℏ2) =

15

2
ℏ2

⟨Ĥ⟩ = 3

4

(
6ℏ2

2I

)
+

1

4

(
12ℏ2

2I

)
=

15

4I
ℏ2

Our time evolution is:
|ψ2(t)⟩ = −

√
3√
2
e−i6ℏte

iπ
3 |2, 1⟩+ 1√

2
e−i12ℏt |3, 1⟩
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Here we have relative phase difference as we envolve in time (because the complex exponentials with
t depend on different energies/frequencies). Therefore, some of our measurements MIGHT depend
on time.

However, since all of our measurements above corresponded to operators which commute with
the Hamiltonian (the operator which determines how states evolve in time), we won’t see any time
dependence in the measurements we made above. However, we could see time dependent probabilties
for operators like position or momentum which DON’T commute with the Hamiltonian on the sphere.
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