

Use the separation of variables procedure on the angular equation

$$\mathbf{L}^2 Y(\theta, \phi) = A \hbar^2 Y(\theta, \phi) \quad (1)$$

$$\text{where } \mathbf{L}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \quad (2)$$

to obtain the following two equations for the polar and azimuthal angles:

$$\left[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) - B \frac{1}{\sin^2 \theta} \right] \Theta(\theta) = -A \Theta(\theta) \quad (3)$$

$$\frac{d^2 \Phi(\phi)}{d\phi^2} = -B \Phi(\phi) \quad (4)$$

where A and B are constants.

Solution Ansatz:

Assume the solution is of the form of a product of an unknown function of θ and an unknown function of ϕ :

$$Y(\theta, \phi) = \Theta(\theta) \Phi(\phi)$$

and plug the ansatz into the differential equation. The derivatives wrt θ act only on the function Θ and the derivatives wrt ϕ act only on the function Φ .

$$0 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + A \right] Y(\theta, \phi) \quad (5)$$

$$= \Phi(\phi) \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \Theta(\theta) + \Theta(\theta) \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \Phi(\phi) + A \Theta(\theta) \Phi(\phi) \quad (6)$$

Divide by $\Theta(\theta) \Phi(\phi)$:

$$0 = \frac{1}{\Theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \Theta(\theta) + \frac{1}{\Phi} \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \Phi(\phi) + A \quad (7)$$

Multiply by $\sin^2 \theta$ to isolate the different variable in different terms:

$$0 = \frac{1}{\Theta} \sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \Theta(\theta) + \frac{1}{\Phi} \frac{\partial^2}{\partial \phi^2} \Phi(\phi) + A \sin^2 \theta \quad (8)$$

Now, all of the dependence of the θ variable is in the first and third terms and all of the dependence on the ϕ variable is in the second term, so we can set these terms separately equal to a constant, $\pm B$:

$$\frac{1}{\Theta} \sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \Theta(\theta) + A \sin^2 \theta = B \quad (9)$$

$$\frac{1}{\Phi} \frac{d^2 \Phi(\phi)}{d\phi^2} = -B \quad (10)$$

Finally, some simple rearrangement of the terms yields

$$\left[\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) - B \frac{1}{\sin^2 \theta} \right] \Theta(\theta) = -A \Theta(\theta) \quad (11)$$

$$\frac{d^2 \Phi(\phi)}{d\phi^2} = -B \Phi(\phi) \quad (12)$$