
Separation of Variables on the Sphere Handout

Use the separation of variables procedure on the angular equation

L2Y (θ, ϕ) = Aℏ2Y (θ, ϕ) (1)
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to obtain the following two equations for the polar and azimuthal angles:[
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Θ(θ) = −AΘ(θ) (3)
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where A and B are constants.

Solution Ansatz:
Assume the solution if of the form of a product of an unknown function of θ and and unknown function
of ϕ:

Y (θ, ϕ) = Θ(θ)Φ(ϕ)

and plug the ansatz into the differential equation. The derivatives wrt θ act only on the function Θ
and the derivatives wrt ϕ act only on the function Φ.
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Y (θ, ϕ) (5)

= Φ(ϕ)
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Φ(ϕ) + AΘ(θ)Φ(ϕ) (6)

Divide by Θ(θ)Φ(ϕ):
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Multiply by sin2 θ to isolate the different variable in different terms:
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Now, all of the dependence of the θ variable is in the first and third terms and all of the dependence
on the ϕ variable is in the second term, so we can set these terms separately equal to a constant, ±B:
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Θ(θ) + A sin2 θ = B (9)
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Finally, some simple rearrangement of the terms yields[
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Θ(θ) = −AΘ(θ) (11)
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2


