
Introduction to Problem Solving Handout

Course Philosophy:
Teaching is the art of leading students into a situation in which they can only escape by thinking.
- Dr. C. T. Bassoppo-Moyo, Zimbabwe

• Problem-Solving Learning Objectives

1. Coordinate verbal, graphical, geometric, diagrammatic, and algebraic representations of
physical objects.

2. Use physical situations with simple geometries as idealized building blocks for more compli-
cated physical situations.

3. Use the symmetries of physical situations to check the validity of symbolic and graphical
representations of those situations.

4. Without panicking, break up a complicated algebraic problem into separate pieces related to
the physical situation.
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• Mathmatics Content Learning Objectives

1. Use power and Laurent series to approximate fields in regions very far or very near the
sources.
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2. Use the “chop, multiply, add” method and dr⃗ to set up and analyze the structure of line,
surface, flux, and volume integrals in rectangular, cylindrical, and spherical coordinates.
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3. Predict the gradient, divergence, and curl of fields from graphical representations.

4. Understand how simple geometric arguments are used to prove the big vector calculus theo-
rems (Divergence and Stokes’).
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• Physics Content Learning Objectives

1. Use line integration to calculate the electrostatic potential from a highly-symmetric, contin-
uous distribution of charge.

2. Use Maxwell’s equations in differential form to predict the location of charge and current
sources from graphs of vector fields .

∇⃗ × B⃗ = µ0 J⃗

3. Experience how Gauss’s and Ampère’s Laws in integral form to find electrostatic and mag-
netostatic fields in highly symmetric situations.

4. Understand how the Divergence and Stokes’ theorems are used to transform the integral form
of Maxwell’s equation to the differential form.
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