
Chain Rules (Lecture) Handout

1 Simultaneous equations with differentials
When working with differentials, the trick is generally to use linear algebra to solve for the differential
you want in terms of the differentials you want to see it related to. You can always do this because
differentials equations are linear in the differentials, i.e. the differentials only occur to the first power,
and are not inside functions.

1.1 A symbolic example
Let’s consider a symbolic example. Suppose you are given the following two equations of state describing
the behavior of a PDM.
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Note that since we have two independent variables, we know that there must exist two equations that
determine the two remaining dependent variables.

Let us ask ourselves a simple question. How stiff is the first string when the other string is held
fixed? Mathematically this stiffness would be something like(
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which if you examine it looks like a stiffness, in the sense that it measures how much force is required to
move the string by a little bit. You could also think of this as a spring constant for small perturbations
of the string.

How would we find this? We would want an expression for dFL in terms of the differentials dxL and
dxR.

We can start by zapping each of our equations with d to obtain two equations of differentials. (You
will often start problems in this way, since zapping with d is almost always the easiest thing to do.)
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These look a bit messy, but in planning our attack, all we need to keep in mind is that we are looking
for an equation that involves only the differentials dxL, dxR, and dFL. In other words, all we need to do
is to eliminate dFR from one of these equations. We can do that by solving for dFR and substituting.
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Note that although we have simply to plugged Eq. 7 into Eq. 5 to obtain Eq. 8. It is big and messy-
looking, but doesn’t involve anything complicated. It is often helpful to gather together each differential,
so each differential (in this case dxL, dxR and dFL) appears just once in the equation.
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To find the derivative we seek, we just need to solve for dFL.
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Now that we have the differential dF1 expressed in terms of just the two differentials dx1 and dx2

(since we have two independent variables in this system), we can simply read of the stiffness derivative
we are seeking as the coefficient in front of the dx1 differential:
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This is a good time to remind yourself why this particular coefficient is this particular partial derivative.
When you read Eq. 10, consider what happens if you set to zero one of the differentials on the right-hand
side, in this case dxR. This represents holding fixed xR. Then you ask (with this held fixed) what is the
ratio between the small change in FL and the small change in xL. This ratio is the coefficient we found,
which must therefore be the partial derivative with xR held fixed.

It is possible that we have not convinced you by this example that this is the easy way to find this
partial derivative. There are other ways to solve for this stiffness, and of course innumerable ways to
simplify this expression. we have chosen this rather tedious and artificial example to highlight that
once you have zapped with d and obtained an equation relating differentials, the rest is simply linear
algebra to express the differential you seek in terms of the differentials you wish to relate it to. You will
practice this many times, both in class and in your homework. In many cases, rather than working with
explicit analytic expressions, you will derive relationships that are true for arbitrary equations of state
(e.g. chain rules).
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