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1 Sensemaking
Two concepts that are essential to making sense of any answer to a thermodynamics question:

A. intensive/extensive determine how an answer scales with the size of a system. You need to think
about this for every answer. (See more details below).

B. dimensions In physics, you need to be aware of, and check, the dimensions of your work, including
intermediate answers.

2 Definitions
A. intensive/extensive If you consider two identical systems taken together (e.g. two cups of water,

or two identical cubes of metal), each thermodynamic property either doubles or remains the same.

Extensive An extensive property, such as mass will double when you’ve got twice as much stuff.
Intensive An intensive property, such as density will be the same when you shift from one system

to the combination of two identical systems.

We care about extensivity and intensivity for several reasons. In one sense, it functions like
dimensions as a way to check our work. In another sense, it is a fundamental aspect of each
measurable property, and once you are accustomed to this, you will feel very uncomfortable if you
don’t know whether it is extensive or intensive. On an exam, you will be docked additional points if
you give an answer that can be determined to be incorrect based on intensive/extensive reasoning.
You can recover these points if you write a note explaining that you noticed the intensive/extensive
issue.

B. heat capacity (extensive) Cp is the amount of energy input by heating to raise the temperature of
a system held at constant pressure, which means that

d̄Q = CpdT (1)

Similarly for CV if the system is held at constant volume.

C. specific heat (intensive) The heat capacity per unit mass.

D. latent heat (extensive) The amount of energy required when heating a system at fixed pressure in
order to change it into a different phase (liquid to gas, solid to liquid, or even solid to gas). During
an abrupt phase change like these, the temperature does not change, even though the system is
given energy by heating.

3 How to measure things
Volume (extensive) Measure dimensions and compute it.

Pressure (intensive) Force per area. Pressure can equalize if two systems can exchange volume.
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Temperature (intensive) Find something that depends on temperature, and calibrate it. Alternatively
use an ideal gas. Equalizes when systems are in contact.

Energy (extensive) Challenging to measure. Can only measure changes in internal energy. Measure
work and heat.

W = −
∫

pdV. (2)

Entropy (extensive) Challenging to measure. Can only measure changes in entropy. Measure heat for
a quasistatic process and find

∆S =

∫
d̄Q

T
. (3)

Heat Energy transferred by heating, from a system its surroundings (or vice versa). In a calorimetry
experiment, we might put a hot resistor in contact with a system, so we can transfer energy from
the resistor to the system by heating.

Work Work happens when the volume changes quasistatically. No work happens when we see free
expansion happening, or if the volume is not changing.

Derivatives Measure changes of one thing as the other changes, with the right stuff held fixed.

4 Physical Laws
First Law (Energy conservation)

dU = d̄Q+ d̄W (4)

Instructor’s guide PER research on this topic ”Student understanding of the first law of thermo-
dynamics: Relating work to the adiabatic compression of an ideal gas” by Loverude et al.

Second Law (Entropy increases)

∆Ssystem +∆Ssurroundings ≥ 0 (5)

Thermodynamic identity

dU = TdS − pdV (6)

This equation describes how a small changes in U corresponds to small changes in S and V as a substance
undergoes a quasi-static process.
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5 Equations of State
These are properties of a particular system. These are only true for that particular system, and are not
true for any other system. Everything related to the ideal gas is in this category. You should never
assume any of these are true unless you are told to assume that.

any ideal gas

pV = NkBT (7)

S = NkB

(
5

2
+ ln

[
V

N

(
4πm

3h2

U

N

) 3
2

])
(8)

Monatomic ideal gas For example, helium, argon, neon...

U =
3

2
NkBT (9)

Diatomic ideal gas between 250 K - 350 K For example H2, N2 and O2...

U =
5

2
NkBT (10)

I repeat, you should never assume that any of these equations is true, either in homework or on an exam,
unless you are told to assume that.

6 Analyzing processes
When you encounter a process (a way a system changes), there are a number of questions you’ll want
to ask yourself.

system Identify what you want to call your system, and what the surroundings are.

irreversible Could this process happen in reverse? If not, you know that the entropy of system plus
surroundings must go up.

quasistatic Is the process slow enough that the state of the system is well defined at all times? If
things are not irreversible, then they almost have to be quasistatic.

heat Does the system heat its surroundings or vice versa? If so, then the entropy must be changing.

work Is something solid moving? Is the volume of the system changing? If so, work is probably being
done, and you can figure out what is doing work on what. If your system is doing work, then
something else must be getting the energy. ”Free expansion” is an example in which volume
changes, but no work is done, because no solid object is moving to have work done to it.
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isothermal Is the system being equilibrated with something big so that the temperature is constant?
This means that energy almost certainly must be transfered by heating, assuming anything at all
is changing. One nice thing about isothermal processes is that if you can find the heat, it’s pretty
easy to find the entropy, since 1/T is constant in

∫
d̄Q
T

.

adiabatic If a system is insulated, then there is no energy transfer by heating.

isochoric If the volume isn’t changing, then no work is done. This means that if just about anything
is changing, then probably temperature and pressure are both changing.

isobaric If the pressure is fixed, there isn’t anything special to be gained at this stage.

Any gas undergoing a quasi-static adiabatic process over a limited temperature range

piV
Cp
CV
i = pfV

Cp
CV
f , (11)

where pi and Vi are in the initial pressure and volume, pf and Vf are the final pressure and volume, and
Cp/CV is the ratio of heat capacities.

7 Math bits
Math identities
Math identities are statements that are mathematically true, such as ”the overlord equation”:

If A is a function of B and C, thendA =

(
∂A

∂B

)
C

dB +

(
∂A

∂C

)
B

dC. (12)

We sometimes use math identities to “push around” truth from one place to another. For example, we
can derive something like: (

∂A

∂B

)
C

= −
(
∂A
∂C

)
B(

∂B
∂C

)
A

(13)

Identifying partial derivatives from equations of differentials
When we have an equation relating total differentials (such as the thermodynamic identity),

dU = TdS − pdV, (14)

the terms that multiply the dS, dV , etc are partial derivatives.

T =

(
∂U

∂S

)
V

−p =

(
∂U

∂V

)
S

(15)

You can show this by comparing the thermodynamic identity with the appropriate overlord equation.
You can do linear algebra using equations that contain total differentials, e.g. substituting one for

another. You will need to be able to zap with d to find equations that relate total differentials (see
below).
Zapping with d
You should be able to zap a complicated algebraic expression with d using a combination of the following
rules:
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• zapping common functions with d, especially exponentials and logarithms.

• product rule

• ordinary chain rule

See the three short videos in the Media Gallery (10 minutes total!): Rules for Differentials, Product
Rule, Chain Rule.
Finding derivatives from discrete information
You should be able to compute a partial derivative from data in a table or on a contour map. The
important point is that a partial derivative is determined by the values of state variables at two ”nearby”
states: state 1 and state 2. For computing

(
∂f
∂g

)
h

it is essential to choose the two ”nearby” states so
that h has the same value in state 1 and state 2. Then you find the values of f and g in the two states
and take the ratio of the small changes in these values:(

∂f

∂g

)
h

=

(
△f

△g

)
h

=

(
f(2)− f(1)

g(2)− g(1)

)
h

What counts as ”nearby”? You want the states close enough together that the relationship between the
variables in essentially linear, but not so close that when you take the difference between two numbers
that are close together you are only getting the error in the measurements. Use good professional
judgement and be prepared to explain briefly why you made the choices that you did.

It is always a good idea to plot data from a table to get a sense of the uncertainty in the data: is
the data approximately linear? smooth? concave-up or down? are you likely over or underestimating
the derivative?

If you are reading the data off a graph, then sometimes (but not always!) the two states lie along a
curve on the graph and this derivative will be the slope of the tangent line.
Physical meaning of differentials
You should be able to describe the geometry of a differentials expression as describing the relationship
between small changes of various physical/geometric variables. For example:

df =

(
∂f

∂g

)
h

dg +

(
∂f

∂h

)
g

dh (16)

tells us that, if g is changing but not h, then small change in f is the rate of change (”slope”)
(

∂f
∂g

)
h

times the small change in g.
Manipulating differentials
Any equation obtained by zapping with d is always linear in the differentials, so it is easy to do (linear)
algebra on these equations. Here is a list of allowable algebraic manipulations:

• subtract a term from both sides of an equation, which effectively moves a term from one side of
an equation to the other, with an appropriate minus sign

• divide both sides of an equation by a partial derivative by turning it upside-down (and keeping
the same variable constant)

• substitute one differential’s expression into another
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The partial derivatives machine
The PDM is a mechanical physical system that has two ways of getting energy into and out of the system
(doing work on each of the two sides). The mathematics of the PDM is analogous to the mathematics
of a thermodynamic system for which you can change the internal energy by doing work or by heating.
So, there are analogues to all the thermodynamics.
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