
Name the experiment (Maxwell relations) Handout

For each one of the partial derivatives below, describe and draw a picture of two experiments that
you could perform to measure that derivative. One of these experiments should ”directly” measure the
derivative you are given, while the other will ”directly” measure a derivative that is related to the first
one by means of a Maxwell relation.(
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At the end of class, you will report to the class on the experiments you developed to measure your
partial derivative, and will comment on which of the two is the easier experiment.

Solution I’ll give solutions for just two of these partial derivatives, which I think form a good
balance of effort versus learning.
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measured directly Measuring this one directly is a bit of a pain. The
only way we know to “directly” measure a change in entropy is to control the
amount of energy added by heating. So we’ll stick our sample in a microwave
oven, so we can use the time to measure the energy added by heating. And we’ll
need insulation (transparent to microwaves) to ensure that there is no accidental heating going on.
We’ll need to measure a change in volume, which is most easily managed with a nice frictionless
piston. The trickiest bit here will be to keep the temperature from changing while we heat the system
up.

I would do this experiment in two steps. I would start by microwaving the system at fixed volume
for a short amount of time (giving me Q). This will raise its temperature. Then I’ll take it out of the
oven (remember that it is insulated!) and slowly adjust the volume until the temperature returns to
its original value. Probably this will require expanding the system a bit.

Once I have done this measurement, I can find the derivative with(
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using a Maxwell relation We have to start by finding a Maxwell rela-
tion involving this derivative. Clearly holding temperature fixed will be relevant,
which suggests using the Helmholtz free energy or Gibbs free energy. Since we
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don’t see pressure, Helmholtz is probably what we want:

F = U − TS (3)
dF = dU − TdS − SdT (4)

= −SdT − pdV (5)
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So now we have a different derivative, which we might hope will be easier to measure. And indeed,
this does seem considerably easier, with no entropy in sight!

We can again use a standard piston, and we can adjust the temperature a bit (by setting the
thermostat in our house, perhaps), and then see how much we need to change the force (by adding
or removing weights on top) to get the volume back to where it started. Once I have done this
measurement, I can find the derivative with(
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where A is the area of the piston.
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measured directly Measuring this one directly is a bit of a pain in
the same way as

(
∂S
∂V

)
T
. As in that case, we’ll want to microwave an insulated

piston, so we will know how much energy is transferred by heating. In fact, the
experiment looks almost identical to the first case, with the only difference being
that when we take the piston out of the microwave and tweak it to return the temperature to its
original value, we will now need to add or remove weights from the piston to get it back to its original
temperature.

Once I have done this measurement, I can find the derivative with(
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using a Maxwell relation With temperature held fixed, we can guess that we want to
use a free energy. Since we already used the Helmholtz free energy above (and it didn’t give us) this
derivative, we can try using the Gibbs free energy.

G = U − TS + pV (14)
dG = dU − TdS − SdT + pdV + V dp (15)

= −SdT + V dp (16)
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I’ll keep this shorter than you should, but basically we’re measuring the thermal expansion of some-
thing at fixed pressure.
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measured directly This derivative isn’t so bad to measure directly as
some of the others. We need to know how much energy was transfered by heating,
so we can use a microwave oven or a resistor to heat our system. We’re holding
the pressure fixed, so that happens for free if the object is in the atmosphere.
So I can measure doing this with a solid cube of a semiconductor for variety. Since I don’t want to
microwave a conductor (even a semiconductor), I’ll instead run a current through it. As long as my
wires have a very low resistance compared with the cube, I can just measure the current and voltage
and find the energy dissipated as heat. Then I just need to carefully measure the volume before and
after to find the change in volume. Maybe I use calipers to carefully measure the dimensions of the
cube. (
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where I calculate Q = IV∆t and get ∆V from the measurements of the cube.
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via a Maxwell relation Since we’re holding p fixed, we can guess that
we want either the enthalpy or the Gibbs free energy. Since I used the Gibbs
free energy on the last one, we can guess to use the enthalpy here. In practice,
you’re likely to have to try both.

H = U + pV (20)
dH = dU + pdV + V dp (21)

= TdS + V dp (22)
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So our derivative showed up upside down, but we can always invert the other derivative. Since the
other derivative holds entropy fixed, we’re going to need to insulate our system, and will want to
adjust the pressure (by adding some weight to a piston) and measure the change in temperature.(
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