- Students evaluate two given partial derivatives from a system of equations.
- Students learn/review generalized Leibniz notation.
- Students may find it helpful to use a chain rule diagram.
We have the following equations of state for the total magnetization \(M\), and the entropy \(S\) of a paramagnetic system: \begin{align} M&=N\mu\, \frac{e^{\frac{\mu B}{k_B T}} - e^{-\frac{\mu B}{k_B T}}} {e^{\frac{\mu B}{k_B T}} + e^{-\frac{\mu B}{k_B T}}}\\ S&=Nk_B\left\{\ln 2 + \ln \left(e^{\frac{\mu B}{k_B T}}+e^{-\frac{\mu B}{k_B T}}\right) +\frac{\mu B}{k_B T} \frac{e^{\frac{\mu B}{k_B T}} - e^{-\frac{\mu B}{k_B T}}} {e^{\frac{\mu B}{k_B T}} + e^{-\frac{\mu B}{k_B T}}} \right\}\\ \end{align}
List variables in their proper positions in the middle columns of the charts below.
Solve for the magnetic susceptibility, which is defined as: \[\chi_B=\left(\frac{\partial M}{\partial B}\right)_T \]
Using both the differentials (zapping with d) and chain rule diagram methods, find a chain rule for:
\[\left(\frac{\partial M}{\partial B}\right)_S \]
Evaluate your chain rule. Sense-making: Why does this come out to zero?
![]()
![]()