assignment Homework
A diesel engine requires no spark plug. Rather, the air in the cylinder is compressed so highly that the fuel ignites spontaneously when sprayed into the cylinder.
In this problem, you may treat air as an ideal gas, which satisfies the equation \(pV = Nk_BT\). You may also use the property of an ideal gas that the internal energy depends only on the temperature \(T\), i.e. the internal energy does not change for an isothermal process. For air at the relevant range of temperatures the heat capacity at fixed volume is given by \(C_V=\frac52Nk_B\), which means the internal energy is given by \(U=\frac52Nk_BT\).
Note: in this problem you are expected to use only the equations given and fundamental physics laws. Looking up the formula in a textbook is not considered a solution at this level.
If the air is initially at room temperature (taken as \(20^{o}C\)) and is then compressed adiabatically to \(\frac1{15}\) of the original volume, what final temperature is attained (before fuel injection)?
assignment Homework
Remember that the delta function is defined so that \[ \delta(x-a)= \begin{cases} 0, &x\ne a\\ \infty, & x=a \end{cases} \]
Also: \[\int_{-\infty}^{\infty} \delta(x-a)\, dx =1\].
assignment Homework
assignment Homework
assignment Homework
The internal energy of helium gas at temperature \(T\) is to a very good approximation given by \begin{align} U &= \frac32 Nk_BT \end{align}
Consider a very irreversible process in which a small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated. What is the change in temperature when this process is complete? How much of the helium will remain in the small bottle?assignment Homework
Consider the bottle in a bottle problem in a previous problem set, summarized here.
A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.The volume of the small bottle is 0.001 m^{23} and the volume of the big bottle is 0.01 m^{3}. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).
How many molecules of gas does the large bottle contain? What is the final temperature of the gas?
Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).
assignment Homework
assignment Homework
Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways, with or without theorems about the center of mass motion. Write a short description comparing the two solutions.
assignment Homework
Which of the following forces can be central forces? which cannot?
assignment Homework
On the following diagrams, mark both \(\theta\) and \(\sin\theta\) for \(\theta_1=\frac{5\pi}{6}\) and \(\theta_2=\frac{7\pi}{6}\). Write one to three sentences about how these two representations are related to each other. (For example, see: https://phet.colorado.edu/sims/html/trig-tour/latest/trig-tour_en.html)
assignment Homework
Learn more about the geometry of \(\vert \vec{r}-\vec{r'}\vert\) in two dimensions.
Make a sketch of the graph \begin{equation} \vert \vec{r} - \vec{a} \vert = 2 \end{equation}
for each of the following values of \(\vec a\): \begin{align} \vec a &= \vec 0\\ \vec a &= 2 \hat x- 3 \hat y\\ \vec a &= \text{points due east and is 2 units long} \end{align}
assignment Homework
In economics, the term utility is roughly related to overall happiness. Many things affect your happiness, including the amount of money you have and the amount of coffee you drink. We cannot directly measure your happiness, but we can measure how much money you are willing to give up in order to obtain coffee or bagels. If we assume you choose wisely, we can thus determine that your happiness increases when you decrease your amount of money by that amount in exchange for increasing your coffee consumption. Thus money is a (poor) measure of happiness or utility.
Money is also a nice quantity because it is conserved---just like energy! You may gain or lose money, but you always do so by a transaction. (There are some exceptions to the conservation of money, but they involve either the Fed, counterfeiters, or destruction of cash money, and we will ignore those issues.)
In this problem, we will assume that you have bought all the coffee and bagels you want (and no more), so that your happiness has been maximized. Thus you are in equilibrium with the coffee shop. We will assume further that you remain in equilibrium with the coffee shop at all times, and that you can sell coffee and bagels back to the coffee shop at cost.^{*}
Thus your savings \(S\) can be considered to be a function of your bagels \(B\) and coffee \(C\). In this problem we will also discuss the prices \(P_B\) and \(P_C\), which you may not assume are independent of \(B\) and \(C\). It may help to imagine that you could possibly buy out the local supply of coffee, and have to import it at higher costs.
The prices of bagels and coffee \(P_B\) and \(P_C\) have derivative relationships between your savings and the quantity of coffee and bagels that you have. What are the units of these prices? What is the mathematical definition of \(P_C\) and \(P_B\)?
Write down the total differential of your savings, in terms of \(B\), \(C\), \(P_B\) and \(P_C\).
assignment Homework
Using integration, find the surface area of a cone with height \(H\) and radius \(R\). Do this problem in both cylindrical and spherical coordinates.
assignment Homework
Shown below is a contour plot of a scalar field, \(\mu(x,y)\). Assume that \(x\)
and \(y\) are measured in meters and that \(\mu\) is measured in kilograms.
Four points are indicated on the plot.
A contour map for a different function is shown above. On a printout of this contour map, sketch a field vector map of the gradient of this function (sketch vectors for at least 10 different points). The direction and magnitude of your vectors should be qualitatively accurate, but do not calculate the gradient for this function.
assignment Homework
Use the cross product to find the components of the unit vector \(\mathbf{\boldsymbol{\hat n}}\) perpendicular to the plane shown in the figure below, i.e. the plane joining the points \(\{(1,0,0),(0,1,0),(0,0,1)\}\).
assignment Homework
assignment Homework
Calculate the curl of each of the following vector fields. You may look up the formulas for curl in curvilinear coordinates.
assignment Homework
assignment Homework
assignment Homework
assignment Homework
At low temperatures, a diatomic molecule can be well described as a rigid rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum \begin{align} H &= \frac{1}{2I}L^2 \end{align} and the energy eigenvalues are \begin{align} E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I} \end{align}
What is the energy of the ground state and the first and second excited states of the \(H_2\) molecule? i.e. the lowest three distinct energy eigenvalues.
At room temperature, what is the relative probability of
finding a hydrogen molecule in the \(\ell=0\) state versus finding it
in any one of the \(\ell=1\) states?
i.e. what is
\(P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)\)
At what temperature is the value of this ratio 1?
assignment Homework
For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.
assignment Homework
assignment Homework
assignment Homework
Imagine you're standing on a landscape with a local topography described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). At the spot you're standing, what is the slope of the ground in the direction of the cottage? Plot the function \(f(x, y)\) and also its level curves in your favorite plotting software. Does your result makes sense from the graph?
assignment Homework
The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.
assignment Homework
Shown above is a two-dimensional vector field.
Determine whether the divergence at point A and at point C is positive, negative, or zero.
assignment Homework
Calculate the divergence of each of the following vector fields. You may look up the formulas for divergence in curvilinear coordinates.
assignment Homework
Consider the vector field \(\vec F=(x+2)\hat{x} +(z+2)\hat{z}\).
assignment Homework
assignment Homework
assignment Homework
Consider the finite line with a uniform charge density from class.
assignment Homework
The goal of this problem is to show that once we have maximized the entropy and found the microstate probabilities in terms of a Lagrange multiplier \(\beta\), we can prove that \(\beta=\frac1{kT}\) based on the statistical definitions of energy and entropy and the thermodynamic definition of temperature embodied in the thermodynamic identity.
The internal energy and entropy are each defined as a weighted average over microstates: \begin{align} U &= \sum_i E_i P_i & S &= -k_B\sum_i P_i \ln P_i \end{align}: We saw in clase that the probability of each microstate can be given in terms of a Lagrange multiplier \(\beta\) as \begin{align} P_i &= \frac{e^{-\beta E_i}}{Z} & Z &= \sum_i e^{-\beta E_i} \end{align} Put these probabilities into the above weighted averages in order to relate \(U\) and \(S\) to \(\beta\). Then make use of the thermodynamic identity \begin{align} dU = TdS - pdV \end{align} to show that \(\beta = \frac1{kT}\).
assignment Homework
Suppose \(g(U) = CU^{3N/2}\), where \(C\) is a constant and \(N\) is the number of particles.
Show that \(U=\frac32 N k_BT\).
Show that \(\left(\frac{\partial^2S}{\partial U^2}\right)_N\) is negative. This form of \(g(U)\) actually applies to a monatomic ideal gas.
assignment Homework
Which pairs of events (if any) are simultaneous in the unprimed frame?
Which pairs of events (if any) are simultaneous in the primed frame?
Which pairs of events (if any) are colocated in the unprimed frame?
Which pairs of events (if any) are colocated in the primed frame?
Which event occurs first in the unprimed frame?
Which event occurs first in the primed frame?
assignment Homework
Consider a system which has an internal energy \(U\) defined by: \begin{align} U &= \gamma V^\alpha S^\beta \end{align} where \(\alpha\), \(\beta\) and \(\gamma\) are constants. The internal energy is an extensive quantity. What constraint does this place on the values \(\alpha\) and \(\beta\) may have?
assignment Homework
Start with \(d\vec{r}\) in rectangular, cylindrical, and spherical coordinates. Use these expressions to write the scalar area elements \(dA\) (for different coordinate equals constant surfaces) and the volume element \(d\tau\). It might help you to think of the following surfaces: The various sides of a rectangular box, a finite cylinder with a top and a bottom, a half cylinder, and a hemisphere with both a curved and a flat side, and a cone.
assignment Homework
Find the force law for a central-force field that allows a particle to move in a spiral orbit given by \(r=k\phi^2\), where \(k\) is a constant.
assignment Homework
Find the upward pointing flux of the electric field \(\vec E =E_0\, z\, \hat z\) through the part of the surface \(z=-3 s^2 +12\) (cylindrical coordinates) that sits above the \((x, y)\)--plane.
assignment Homework
assignment Homework
The internal energy is of any ideal gas can be written as \begin{align} U &= U(T,N) \end{align} meaning that the internal energy depends only on the number of particles and the temperature, but not the volume.^{*}
The ideal gas law \begin{align} pV &= Nk_BT \end{align} defines the relationship between \(p\), \(V\) and \(T\). You may take the number of molecules \(N\) to be constant. Consider the free adiabatic expansion of an ideal gas to twice its volume. “Free expansion” means that no work is done, but also that the process is also neither quasistatic nor reversible.What is the change in entropy of the gas? How do you know this?
assignment Homework
assignment Homework
Consider two noninteracting systems \(A\) and \(B\). We can either treat these systems as separate, or as a single combined system \(AB\). We can enumerate all states of the combined by enumerating all states of each separate system. The probability of the combined state \((i_A,j_B)\) is given by \(P_{ij}^{AB} = P_i^AP_j^B\). In other words, the probabilities combine in the same way as two dice rolls would, or the probabilities of any other uncorrelated events.
assignment Homework
Find the gradient of each of the following functions:
assignment Homework
The gravitational field due to a spherical shell of matter (or equivalently, the electric field due to a spherical shell of charge) is given by: \begin{equation} \vec g = \begin{cases} 0&\textrm{for } r<a\\ -G \,\frac{M}{b^3-a^3}\, \left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\ -G\,\frac{M}{r^2}\, \hat r & \textrm{for } r>b \\ \end{cases} \end{equation}
This problem explores the consequences of the divergence theorem for this shell.
assignment Homework
A helix with 17 turns has height \(H\) and radius \(R\). Charge is distributed on the helix so that the charge density increases like (i.e. proportional to) the square of the distance up the helix. At the bottom of the helix the linear charge density is \(0~\frac{\textrm{C}}{\textrm{m}}\). At the top of the helix, the linear charge density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the helix?
assignment Homework
Consider the frictionless motion of a hockey puck of mass \(m\) on a perfectly circular bowl-shaped ice rink with radius \(a\). The central region of the bowl (\(r < 0.8a\)) is perfectly flat and the sides of the ice bowl smoothly rise to a height \(h\) at \(r = a\).
assignment Homework
assignment Homework
Use integration to find the total mass of the icecream in a packed cone (both the cone and the hemisphere of icecream on top).
assignment Homework
In class, you measured the isolength stretchability and the isoforce stretchability of your systems in the PDM. We found that for some systems these were very different, while for others they were identical.
Show with algebra (NOT experiment) that the ratio of isolength stretchability to isoforce stretchability is the same for both the left-hand side of the system and the right-hand side of the system. i.e.: \begin{align} \frac{\left(\frac{\partial {x_L}}{\partial {F_L}}\right)_{x_R}}{\left(\frac{\partial {x_L}}{\partial {F_L}}\right)_{F_R}} &= \frac{\left(\frac{\partial {x_R}}{\partial {F_R}}\right)_{x_L}}{\left(\frac{\partial {x_R}}{\partial {F_R}}\right)_{F_L}} \label{eq:ratios} \end{align}
assignment Homework
The isothermal compressibility is defined as \begin{equation} K_{T}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T} \end{equation} \(K_T\) is be found by measuring the fractional change in volume when the the pressure is slightly changed with the temperature held constant. In contrast, the adiabatic compressibility is defined as \begin{equation} K_{S}=-\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{S} \end{equation} and is measured by making a slight change in pressure without allowing for any heat transfer. This is the compressibility, for instance, that would directly affect the speed of sound. Show that \begin{equation} \frac{K_{T}}{K_{S}} = \frac{C_{p}}{C_{V}} \end{equation} Where the heat capacities at constant pressure and volume are given by \begin{align} C_{p} &= T \left(\frac{\partial S}{\partial T}\right)_{p} \\ C_{V} &= T \left(\frac{\partial S}{\partial T}\right)_{V} \end{align}
assignment Homework
assignment Homework
Find the electric field around an infinite, uniformly charged, straight wire, starting from the following expression for the electrostatic potential: \begin{equation} V(\vec r)=\frac{2\lambda}{4\pi\epsilon_0}\, \ln\left( \frac{ s_0}{s} \right) \end{equation}
assignment Homework
Consider a collection of three charges arranged in a line along the \(z\)-axis: charges \(+Q\) at \(z=\pm D\) and charge \(-2Q\) at \(z=0\).
assignment Homework
Find the electrostatic potential at a point \(P\) on the \(x\)-axis at a distance \(x\) from the center of the quadrupole.
A series of charges arranged in this way is called a linear quadrupole. Why?
assignment Homework
The general equation for a straight line in polar coordinates is given by: \begin{equation} r(\phi)=\frac{r_0}{\cos(\phi-\delta)} \end{equation} Find the polar equation for the straight lines below. You do NOT need to evaluate any complicated trig or inverse trig functions. You may want to try plotting the general polar equation to figure out the roles of the parameters.
assignment Homework
assignment Homework
assignment Homework
Determine the total mass of each of the slabs below.
assignment Homework
Look up and memorize the power series to fourth order for \(e^z\), \(\sin z\), \(\cos z\), \((1+z)^p\) and \(\ln(1+z)\). For what values of \(z\) do these series converge?
assignment Homework
Nuclei of a particular isotope species contained in a crystal have spin \(I=1\), and thus, \(m = \{+1,0,-1\}\). The interaction between the nuclear quadrupole moment and the gradient of the crystalline electric field produces a situation where the nucleus has the same energy, \(E=\varepsilon\), in the state \(m=+1\) and the state \(m=-1\), compared with an energy \(E=0\) in the state \(m=0\), i.e. each nucleus can be in one of 3 states, two of which have energy \(E=\varepsilon\) and one has energy \(E=0\).
Find the Helmholtz free energy \(F = U-TS\) for a crystal containing \(N\) nuclei which do not interact with each other.
Find an expression for the entropy as a function of temperature for this system. (Hint: use results of part a.)
assignment Homework
List variables in their proper positions in the middle columns of the charts below.
Solve for the magnetic susceptibility, which is defined as: \[\chi_B=\left(\frac{\partial M}{\partial B}\right)_T \]
Using both the differentials (zapping with d) and chain rule diagram methods, find a chain rule for:
\[\left(\frac{\partial M}{\partial B}\right)_S \]
Evaluate your chain rule. Sense-making: Why does this come out to zero?
assignment Homework
assignment Homework
Show that the plane polar coordinates we have chosen are equivalent to spherical coordinates if we make the choices:
assignment Homework
In this course, two of the primary examples we will be using are the potential due to gravity and the potential due to an electric charge. Both of these forces vary like \(\frac{1}{r}\), so they will have many, many similarities. Most of the calculations we do for the one case will be true for the other. But there are some extremely important differences:
assignment Homework
It has been proposed to use the thermal gradient of the ocean to drive a heat engine. Suppose that at a certain location the water temperature is \(22^\circ\)C at the ocean surface and \(4^{o}\)C at the ocean floor.
What is the maximum possible efficiency of an engine operating between these two temperatures?
assignment Homework
At a power plant that produces 1 GW (\(10^{9} \text{watts}\)) of electricity, the steam turbines take in steam at a temperature of \(500^{o}C\), and the waste energy is expelled into the environment at \(20^{o}C\).
What is the maximum possible efficiency of this plant?
Suppose you arrange the power plant to expel its waste energy into a chilly mountain river at \(15^oC\). Roughly how much money can you make in a year by installing your improved hardware, if you sell the additional electricity for 10 cents per kilowatt-hour?
At what rate will the plant expel waste energy into this river?
Assume the river's flow rate is 100 m\(^{3}/\)s. By how much will the temperature of the river increase?
assignment Homework
assignment Homework
assignment Homework
Find the entropy of a set of \(N\) oscillators of frequency \(\omega\) as a function of the total quantum number \(n\). Use the multiplicity function: \begin{equation} g(N,n) = \frac{(N+n-1)!}{n!(N-1)!} \end{equation} and assume that \(N\gg 1\). This means you can make the Sitrling approximation that \(\log N! \approx N\log N - N\). It also means that \(N-1 \approx N\).
Let \(U\) denote the total energy \(n\hbar\omega\) of the oscillators. Express the entropy as \(S(U,N)\). Show that the total energy at temperature \(T\) is \begin{equation} U = \frac{N\hbar\omega}{e^{\frac{\hbar\omega}{kT}}-1} \end{equation} This is the Planck result found the hard way. We will get to the easy way soon, and you will never again need to work with a multiplicity function like this.
assignment Homework
(2 points each)
You know that the normalized spatial eigenfunctions for a particle in a 1-D box of length \(L\) are \(\sqrt{\frac{2}{L}}\sin{\frac{n\pi x}{L}}\). If you want the eigenfunctions for a particle in a 2-D box, then you just multiply together the eigenfunctions for a 1-D box in each direction. (This is what the separation of variables procedure tells you to do.)
Any sufficiently smooth spatial wave function inside a 2-D box can be expanded in a double sum of the product wave functions, i.e. \begin{equation} \psi(x,y)=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\; \hbox{eigenfunction}_n(x)\;\hbox{eigenfunction}_m(y) \end{equation} Using your expressions from part (a) above, write out all the terms in this sum out to \(n=3\), \(m=3\). Arrange the terms, conventionally, in terms of increasing energy.
You may find it easier to work in bra/ket notation: \begin{align*} \left|{\psi}\right\rangle &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{n}\right\rangle \left|{m}\right\rangle \\ &=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\, c_{nm}\left|{nm}\right\rangle \end{align*}
assignment Homework
Using your favorite graphing package, make a plot of the reduced mass \(\mu\) as a function of \(m_1\) and \(m_2\). What about the shape of this graph tells you something about the physical world that you would like to remember. You should be able to find at least three things.
assignment Homework
Find \(N\).
assignment Homework
Consider a hanging rectangular rubber sheet. We will consider there to be two ways to get energy into or out of this sheet: you can either stretch it vertically or horizontally. The distance of vertical stretch we will call \(y\), and the distance of horizontal stretch we will call \(x\).
If I pull the bottom down by a small distance \(\Delta y\), with no horizontal force, what is the resulting change in width \(\Delta x\)? Express your answer in terms of partial derivatives of the potential energy \(U(x,y)\).
assignment Homework
Recall that, if you take an infinite number of terms, the series for \(\sin z\) and the function itself \(f(z)=\sin z\) are equivalent representations of the same thing for all real numbers \(z\), (in fact, for all complex numbers \(z\)). This is not always true. More commonly, a series is only a valid, equivalent representation of a function for some more restricted values of \(z\). The technical name for this idea is convergence--the series only "converges" to the value of the function on some restricted domain.
Find the power series for the function \(f(z)=\frac{1}{1+z^2}\). Then, using the Mathematica worksheet from class (vfpowerapprox.nb) as a model, or some other computer algebra system like Sage or Maple, explore the convergence of this series. Where does your series for this new function converge? Can you tell anything about the region of convergence from the graphs of the various approximations? Print out a plot and write a brief description (a sentence or two) of the region of convergence.
Note: As a matter of professional ettiquette (or in some cases, as a legal copyright requirement), if you use or modify a computer program written by someone else, you should always acknowledge that fact briefly in whatever you write up. Say something like: “This calculation was based on a (name of software package) program titled (title) originally written by (author) copyright (copyright date).
assignment Homework
Write out the first four nonzero terms in the series:
\[\sum\limits_{n=0}^\infty \frac{1}{n!}\]
assignment Homework
Write (a good guess for) the following series using sigma \(\left(\sum\right)\) notation. (If you only know a few terms of a series, you don't know for sure how the series continues.)
\[1 - 2\,\theta^2 + 4\,\theta^4 - 8\,\theta^6 +\,\dots\]
assignment Homework
assignment Homework
One way to write volume charge densities without using piecewise functions is to use step \((\Theta)\) or \(\delta\) functions. If you need to review this, see the following link in the math-physics book: https://books.physics.oregonstate.edu/GMM/step.html
Consider a spherical shell with charge density \(\rho (\vec{r})=\alpha3e^{(k r)^3}\) between the inner radius \(a\) and the outer radius \(b\). The charge density is zero everywhere else. Use step functions to write this charge density as a single function valid everywhere in space.
assignment Homework
assignment Homework
assignment Homework
In each of the following sums, shift the index \(n\rightarrow n+2\). Don't forget to shift the limits of the sum as well. Then write out all of the terms in the sum (if the sum has a finite number of terms) or the first five terms in the sum (if the sum has an infinite number of terms) and convince yourself that the two different expressions for each sum are the same:
assignment Homework
Using a dot product, find the angle between any two line segments that join the center of a regular tetrahedron to its vertices. Hint: Think of the vertices of the tetrahedron as sitting at the vertices of a cube (at coordinates (0,0,0), (1,1,0), (1,0,1) and (0,1,1)---you may need to build a model and play with it to see how this works!)
assignment Homework
The electrostatic potential due to a point charge at the origin is given by: \begin{equation} V=\frac{1}{4\pi\epsilon_0} \frac{q}{r} \end{equation}
assignment Homework
assignment Homework
The function \(\theta(x)\) (the Heaviside or unit step function) is a defined as: \begin{equation} \theta(x) =\begin{cases} 1 & \textrm{for}\; x>0 \\ 0 & \textrm{for}\; x<0 \end{cases} \end{equation} This function is discontinuous at \(x=0\) and is generally taken to have a value of \(\theta(0)=1/2\).
Make sketches of the following functions, by hand, on axes with the same scale and domain. Briefly describe, using good scientific writing that includes both words and equations, the role that the number two plays in the shape of each graph: \begin{align} y &= \theta (x)\\ y &= 2+\theta (x)\\ y &= \theta(2+x)\\ y &= 2\theta (x)\\ y &= \theta (2x) \end{align}
assignment Homework
For each case below, find the total charge.
assignment Homework
A current \(I\) flows down a cylindrical wire of radius \(R\).
assignment Homework
assignment Homework
Consider the diagram of \(T\) vs \(V\) for several different constant values of \(p\).
Translate this diagram to a \(p\) vs \(V\) w/ constant \(T\) graph, including the point \(A\). Complete your graph by hand and make a fairly accurate sketch by printing out the attached grid or in some other way making nice square axes with appropriate tick marks.
Are the lines that you drew straight or curved? What feature of the \(TV\) graph would have to change to change this result?
Sketch the line of constant temperature that passes through the point \(A\).
assignment Homework
assignment Homework
Let \begin{align} \boldsymbol{\vec a} &= \boldsymbol{\hat x}-3\boldsymbol{\hat y}-\boldsymbol{\hat z}\\ \boldsymbol{\vec b} &= \boldsymbol{\hat x}+\boldsymbol{\hat y}+2\boldsymbol{\hat z}\\ {\boldsymbol{\vec c}} &= -2\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z}\\ \boldsymbol{\vec d} &= -\boldsymbol{\hat x}-\boldsymbol{\hat y}+\boldsymbol{\hat z} \end{align}
Which pairs (if any) of these vectors
assignment Homework
assignment Homework
Sketch the volume charge density: \begin{equation} \rho (x,y,z)=c\,\delta (x-3) \end{equation}
assignment Homework
You have a charge distribution composed of two point charges: one with charge \(+3q\) located at \(x=-d\) and the other with charge \(-q\) located at \(x=+d\).
assignment Homework
In a solid, a free electron doesn't see” a bare nuclear charge since the nucleus is surrounded by a cloud of other electrons. The nucleus will look like the Coulomb potential close-up, but be screened” from far away. A common model for such problems is described by the Yukawa or screened potential: \begin{equation} U(r)= -\frac{k}{r} e^{-\frac{r}{\alpha}} \end{equation}
assignment Homework
Find the differential of each of the following expressions; zap each of the following with \(d\):
\[f=3x-5z^2+2xy\]
\[g=\frac{c^{1/2}b}{a^2}\]
\[h=\sin^2(\omega t)\]
\[j=a^x\]