None

The concentration of potassium \(\text{K}^+\) ions in the internal sap of a plant cell (for example, a fresh water alga) may exceed by a factor of \(10^4\) the concentration of \(\text{K}^+\) ions in the pond water in which the cell is growing. The chemical potential of the \(\text{K}^+\) ions is higher in the sap because their concentration \(n\) is higher there. Estimate the difference in chemical potential at \(300\text{K}\) and show that it is equivalent to a voltage of \(0.24\text{V}\) across the cell wall. Take \(\mu\) as for an ideal gas. Because the values of the chemical potential are different, the ions in the cell and in the pond are not in diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of ions through it. Important questions in cell physics include these: How is the high concentration of ions built up within the cell? How is metabolic energy applied to energize the active ion transport?

- David adds
- You might wonder why it is even remotely plausible to consider the ions in solution as an ideal gas. The key idea here is that the ideal gas entropy incorporates the entropy due to position dependence, and thus due to concentration. Since concentration is what differs between the cell and the pond, the ideal gas entropy describes this pretty effectively. In contrast to the concentration dependence, the temperature-dependence of the ideal gas chemical potential will not be so great.

A diesel engine requires no spark plug. Rather, the air in the cylinder is compressed so highly that the fuel ignites spontaneously when sprayed into the cylinder.

In this problem, you may treat air as an ideal gas, which satisfies the equation \(pV = Nk_BT\). You may also use the property of an ideal gas that the internal energy depends only on the temperature \(T\), i.e. the internal energy does not change for an isothermal process. For air at the relevant range of temperatures the heat capacity at fixed volume is given by \(C_V=\frac52Nk_B\), which means the internal energy is given by \(U=\frac52Nk_BT\).

**Note: in this problem you are expected to use only the equations
given and fundamental physics laws. Looking up the formula in a textbook
is not considered a solution at this level.
**

If the air is initially at room temperature (taken as \(20^{o}C\)) and is then compressed adiabatically to \(\frac1{15}\) of the original volume, what final temperature is attained (before fuel injection)?

- By what factor does the pressure increase?

*(Messy algebra) Purpose: Convince yourself that the expressions for kinetic energy in original and center of mass coordinates are equivalent. The same for angular momentum.*

Consider a system of two particles of mass \(m_1\) and \(m_2\).

- Show that the total kinetic energy of the system is the same as that of two “fictitious” particles: one of mass \(M=m_1+m_2\) moving with the velocity of the center of mass and one of mass \(\mu\) (the reduced mass) moving with the velocity of the relative position.
- Show that the total angular momentum of the system can similarly be decomposed into the angular momenta of these two fictitious particles.

Remember that the delta function is defined so that \[ \delta(x-a)= \begin{cases} 0, &x\ne a\\ \infty, & x=a \end{cases} \]

Also: \[\int_{-\infty}^{\infty} \delta(x-a)\, dx =1\].

- Find a set of functions that approximate the delta function \(\delta(x-a)\) with a sequence of isosceles triangles \(\delta_{\epsilon}(x-a)\), centered at \(a\), that get narrower and taller as the parameter \(\epsilon\) approaches zero.
- Using the test function \(f(x)=3x^2\), find the value of \[\int_{-\infty}^{\infty} f(x)\delta_{\epsilon}(x-a)\, dx\] Then, show that the integral approaches \(f(a)\) in the limit that \(\epsilon \rightarrow 0\).

Determine the following derivatives and evaluate the following integrals, all by hand. You should also learn how to check these answers on Wolfram Alpha.

- \(\frac{d}{du}\left(u^2\sin u\right)\)
- \(\frac{d}{dz}\left(\ln(z^2+1)\right)\)
- \(\displaystyle\int v\cos(v^2)\,dv\)
- \(\displaystyle\int v\cos v\,dv\)

Consider a three-state system with
energies \((-\epsilon,0,\epsilon)\).

- At infinite temperature, what are the probabilities of the three states being occupied? What is the internal energy \(U\)? What is the entropy \(S\)?
- At very low temperature, what are the three probabilities?
- What are the three probabilities at zero temperature? What is the internal energy \(U\)? What is the entropy \(S\)?
- What happens to the probabilities if you allow the temperature to be negative?

None

The internal energy of helium gas at temperature \(T\) is to a very good approximation given by \begin{align} U &= \frac32 Nk_BT \end{align}

Consider a very irreversible process in which a small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated. What is the change in temperature when this process is complete? How much of the helium will remain in the small bottle?None

Consider the bottle in a bottle problem in a previous problem set, summarized here.

A small bottle of helium is placed inside a large bottle, which otherwise contains vacuum. The inner bottle contains a slow leak, so that the helium leaks into the outer bottle. The inner bottle contains one tenth the volume of the outer bottle, which is insulated.The volume of the small bottle is 0.001 m^{23} and the volume of the big bottle is 0.01 m^{3}. The initial state of the gas in the small bottle was \(p=106\) Pa and its temperature \(T=300\) K. Approximate the helium gas as an ideal gas of equations of state \(pV=Nk_BT\) and \(U=\frac32 Nk_BT\).

How many molecules of gas does the large bottle contain? What is the final temperature of the gas?

Compute the integral \(\int \frac{{\mathit{\unicode{273}}} Q}{T}\) and the change of entropy \(\Delta S\) between the initial state (gas in the small bottle) and the final state (gas leaked in the big bottle).

- Discuss your results.

In your kits for the Portable Partial Derivative Machine should be the following:

- A 1ft by 1ft board with 5 holes and measuring tapes (the measuring tapes will be on the
**top**side) - 2 S-hooks
- A spring with 3 strings attached
- 2 small cloth bags
- 4 large ball bearings
- 8 small ball bearings
- 2 vertical clamp pulleys
- A ziploc bag containing
- 5 screws
- 5 hex nuts
- 5 washers
- 5 wing nuts
- 2 horizontal pulleys

- one screw should be put through each hole so that the threads stick out through the top side of the board. Next use a hex nut to secure
**each**screw in place. It is not critical that they be screwed on any more than you can comfortably manage by hand. - After securing all 5 screws in place with a hex nut, put a washer on each screw.
- Slide a horizontal pulley onto screws 1 and 2 (as labeled above).
- On all 5 screws, add a wing nut to secure the other pieces. Again, it does not need to be tightened all the way as long as it is secure enough that nothing will fall off.
- Using the middle wingnut/washer/screw (Screw 4), clamp the shortest of the strings tied to the spring.
- Loop the remaining 2 looped-ends of string around the horizontal pulleys and along the measuring tape.
- Using the string as a guide, clamp the vertical pulleys into place on the edge of the board.
- Through the looped-end of each string, place 1 S-hook.
- Put the other end of each s-hook through the hole in the small cloth bag.

Calculate based on the Clausius-Clapeyron equation the value of
\(\frac{dT}{dp}\) near \(p=1\text{atm}\) for the liquid-vapor
equilibrium of water. The heat of vaporization at
\(100^\circ\text{C}\) is \(2260\text{ J g}^{-1}\). Express the result
in kelvin/atm.

In carbon monoxide poisoning the CO replaces the \(\textsf{O}_{2}\) adsorbed on hemoglobin (\(\text{Hb}\)) molecules in the blood. To show the effect, consider a model for which each adsorption site on a heme may be vacant or may be occupied either with energy \(\varepsilon_A\) by one molecule \(\textsf{O}_{2}\) or with energy \(\varepsilon_B\) by one molecule CO. Let \(N\) fixed heme sites be in equilibrium with \(\textsf{O}_{2}\) and CO in the gas phases at concentrations such that the activities are \(\lambda(\text{O}_2) = 1\times 10^{-5}\) and \(\lambda(\text{CO}) = 1\times 10^{-7}\), all at body temperature \(37^\circ\text{C}\). Neglect any spin multiplicity factors.

First consider the system in the absence of CO. Evaluate \(\varepsilon_A\) such that 90 percent of the \(\text{Hb}\) sites are occupied by \(\textsf{O}_{2}\). Express the answer in eV per \(\textsf{O}_{2}\).

Now admit the CO under the specified conditions. Fine \(\varepsilon_B\) such that only 10% of the Hb sites are occupied by \(\textsf{O}_{2}\).

*(Straightforward) Purpose: Discover that a system of two masses can be a central force system even when they are not interacting at all. Practice with center-of-mass coordinates.*

Consider two particles of equal mass \(m\). The forces on the particles are \(\vec F_1=0\) and \(\vec F_2=F_0\hat{x}\). If the particles are initially at rest at the origin, find the position, velocity, and acceleration of the center of mass as functions of time. Solve this problem in two ways,

- with theorems about the center of mass motion,
- without theorems about the center of mass motion.
- Write a short description comparing the two solutions.

*(Quick) Purpose: Recognize the definition of a central force. Build experience about which common physical situations represent central forces and which don't.*

Which of the following forces can be central forces? which cannot? If the force CAN be a central force, explain the circumstances that would allow it to be a central force.

- The force on a test mass \(m\) in a gravitational field \(\vec{g~}\), i.e. \(m\vec g\)
- The force on a test charge \(q\) in an electric field \(\vec E\), i.e. \(q\vec E\)
- The force on a test charge \(q\) moving at velocity \(\vec{v~}\) in a magnetic field \(\vec B\), i.e. \(q\vec v \times \vec B\)

*(Quick) Purpose: Quickly recognize a consequence of central forces.*

If a central force is the only force acting on a system of two masses (i.e. no external forces), what will the motion of the center of mass be?

None

A circular cylinder of radius \(R\)
rotates about the long axis with angular velocity \(\omega\). The
cylinder contains an ideal gas of atoms of mass \(M\) at temperature
\(T\). Find an expression for the dependence of the concentration
\(n(r)\) on the radial distance \(r\) from the axis, in terms of
\(n(0)\) *on* the axis. Take \(\mu\) as for an ideal gas.

None

A charged spiral in the \(x,y\)-plane has 6 turns from the origin out to a maximum radius \(R\) , with \(\phi\) increasing proportionally to the distance from the center of the spiral. Charge is distributed on the spiral so that the charge density increases linearly as the radial distance from the center increases. At the center of the spiral the linear charge density is
\(0~\frac{\textrm{C}}{\textrm{m}}\). At the end of the spiral, the linear charge
density is \(13~\frac{\textrm{C}}{\textrm{m}}\). What is the total charge on the
spiral?

None

Find the rectangular coordinates of the point where the angle \(\frac{5\pi}{3}\) meets the unit circle. If this were a point in the complex plane, what would be the rectangular and exponential forms of the complex number? (See figure.)

None

On the following diagrams, mark both \(\theta\) and \(\sin\theta\) for \(\theta_1=\frac{5\pi}{6}\) and \(\theta_2=\frac{7\pi}{6}\). Write one to three sentences about how these two representations are related to each other. (For example, see: this PHET)

In economics, the term *utility* is roughly related to overall
happiness. Many things affect your happiness, including the amount of
money you have and the amount of coffee you drink. We cannot directly
measure your happiness, but we *can* measure how much money you
are willing to give up in order to obtain coffee or bagels. If we
assume you choose wisely, we can thus determine that your happiness
increases when you decrease your amount of money by that amount in
exchange for increasing your coffee consumption. Thus money is a
(poor) measure of happiness or utility.

Money is also a nice quantity because it is conserved---just like energy! You may gain or lose money, but you always do so by a transaction. (There are some exceptions to the conservation of money, but they involve either the Fed, counterfeiters, or destruction of cash money, and we will ignore those issues.)

In this problem, we will assume that you have bought all the coffee
and bagels you want (and no more), so that your happiness has been
maximized. Thus you are in equilibrium with the coffee shop. We will
assume further that you remain in equilibrium with the coffee shop at
all times, and that you can sell coffee and bagels back to the coffee
shop at cost.^{*}

Thus your savings \(S\) can be considered to be a function of your
bagels \(B\) and coffee \(C\). In this problem we will also discuss the
prices \(P_B\) and \(P_C\), which you may *not* assume are
independent of \(B\) and \(C\).
It may help to imagine that you could possibly buy out the local supply of coffee,
and have to import it at higher costs.

The prices of bagels and coffee \(P_B\) and \(P_C\) have derivative relationships between your savings and the quantity of coffee and bagels that you have. What are the units of these prices? What is the mathematical definition of \(P_C\) and \(P_B\)?

Write down the total differential of your savings, in terms of \(B\), \(C\), \(P_B\) and \(P_C\).

- Solve for the total differential of your net worth. Your net worth \(W\) is the sum of your total savings plus the value of the coffee and bagels that you own. From the total differential, relate your amount of coffee and bagels to partial derivatives of your net worth.

Given the polar basis kets written as a superposition of Cartesian kets \begin{eqnarray*} \left|{\hat{s}}\right\rangle &=& \cos\phi \left|{\hat{x}}\right\rangle + \sin\phi \left|{\hat{y}}\right\rangle \\ \left|{\hat{\phi}}\right\rangle &=& -\sin\phi \left|{\hat{x}}\right\rangle + \cos\phi \left|{\hat{y}}\right\rangle \end{eqnarray*}

Find the following quantities: \[\left\langle {\hat{x}}\middle|{\hat{s}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{{\hat{s}}}\right\rangle ,\quad \left\langle {\hat{x}}\middle|{\hat{\phi}}\right\rangle ,\quad \left\langle {\hat{y}}\middle|{\hat{\phi}}\right\rangle \]

- Given a vector written in the polar basis \[\left|{\vec{v}}\right\rangle = a\left|{\hat{s}}\right\rangle + b\left|{\hat{\phi}}\right\rangle \] where \(a\) and \(b\) are known. Find coefficients \(c\) and \(d\) such that \[\left|{\vec{v}}\right\rangle = c\left|{\hat{x}}\right\rangle + d\left|{\hat{y}}\right\rangle \] Do this by using the completeness relation: \[\left|{\hat{x}}\right\rangle \left\langle {\hat{x}}\right| + \left|{\hat{y}}\right\rangle \left\langle {\hat{y}}\right| = 1\]
- Using a completeness relation, change the basis of the spin-1/2 state \[\left|{\Psi}\right\rangle = g\left|{+}\right\rangle + h\left|{-}\right\rangle \] into the \(S_y\) basis. In otherwords, find \(j\) and \(k\) such that \[\left|{\Psi}\right\rangle = j\left|{+}\right\rangle _y + k\left|{-}\right\rangle _y\]

None

- Find \(dA\) on the surface of an (open) cone in both cylindrical and spherical coordinates. Hint: Be smart about how you coordinatize the cone.
- Using integration, find the surface area of an (open) cone with height \(H\) and radius \(R\). Do this problem in both cylindrical and spherical coordinates.

None

Shown below is a contour plot of a scalar field, \(\mu(x,y)\). Assume that \(x\)
and \(y\) are measured in meters and that \(\mu\) is measured in kilograms.
Four points are indicated on the plot.

- Determine \(\frac{\partial\mu}{\partial x}\) and \(\frac{\partial\mu}{\partial y}\) at each of the four points.
- On a printout of the figure, draw a qualitatively accurate vector at each point corresponding to the gradient of \(\mu(x,y)\) using your answers to part a above. How did you choose a scale for your vectors? Describe how the direction of the gradient vector is related to the contours on the plot and what property of the contour map is related to the magnitude of the gradient vector.
- Evaluate the gradient of \(h(x,y)=(x+1)^2\left(\frac{x}{2}-\frac{y}{3}\right)^3\) at the point \((x,y)=(3,-2)\).

None

Use the cross product to find the components of the unit vector \(\mathbf{\boldsymbol{\hat n}}\) perpendicular to the plane shown in the figure below, i.e. the plane joining the points \(\{(1,0,0),(0,1,0),(0,0,1)\}\).

None

- Charge is distributed throughout the volume of a dielectric cube with charge density \(\rho=\beta z^2\), where \(z\) is the height from the bottom of the cube, and where each side of the cube has length \(L\). What is the total charge inside the cube? Do this problem in two ways as both a single integral and as a triple integral.
- On a different cube: Charge is distributed on the surface of a cube with charge density \(\sigma=\alpha z\) where \(z\) is the height from the bottom of the cube, and where each side of the cube has length \(L\). What is the total charge on the cube? Don't forget about the top and bottom of the cube.

None

Shown above is a two-dimensional cross-section of a vector field. All the parallel cross-sections of this field look exactly the same. Determine the direction of the curl at points A, B, and C.

Calculate the curl of each of the following vector fields. You may look up the formulas for curl in curvilinear coordinates.

- \begin{equation} \vec{F}=z^2\,\hat{x} + x^2 \,\hat{y} -y^2 \,\hat{z} \end{equation}
- \begin{equation} \vec{G} = e^{-x} \,\hat{x} + e^{-y} \,\hat{y} +e^{-z} \,\hat{z} \end{equation}
- \begin{equation} \vec{H} = yz\,\hat{x} + zx\,\hat{y} + xy\,\hat{z} \end{equation}
- \begin{equation} \vec{I} = x^2\,\hat{x} + z^2\,\hat{y} + y^2\,\hat{z} \end{equation}
- \begin{equation} \vec{J} = xy\,\hat{x} + xz\,\hat{y} + yz\,\hat{z} \end{equation}
- \begin{equation} \vec{K} = s^2\,\hat{s} \end{equation}
- \begin{equation} \vec{L} = r^3\,\hat{\phi} \end{equation}

A solid cylinder with radius \(R\) and height \(H\) has its
base on the \(x,y\)-plane and is
symmetric around the \(z\)-axis. There is a fixed volume charge density
on the cylinder \(\rho=\alpha z\). If the cylinder is spinning with period \(T\):

- Find the volume current density.
- Find the total current.

None

The current density in a cylindrical wire of radius \(R\) is given by
\(\vec{J}(\vec{r})=\alpha s^3\cos^2\phi\,\hat{z}\). Find the total current in the wire.

Use the NIST web site “Thermophysical Properties of Fluid Systems” to answer the following questions. This site is an excellent resource for finding experimentally measured properties of fluids.

- Find the partial derivatives \[\left(\frac{\partial {S}}{\partial {T}}\right)_{p}\] \[\left(\frac{\partial {S}}{\partial {T}}\right)_{V}\] where \(p\) is the pressure, \(V\) is the volume, \(S\) is the entropy, and \(T\) is the temperature. Please find these derivatives for one gram of methanol at one atmosphere of pressure and at room temperature.
- Why does it take only two variables to define the state?
- Why are the derivatives above different?
- What do the words isobaric, isothermal, and isochoric mean?

None

- Let \[|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \qquad \rm{and} \qquad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\] Show that \(\left|{\alpha}\right\rangle \) and \(\left|{\beta}\right\rangle \) are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)
- Consider the matrix \[C\doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \] Show that the vectors \(|\alpha\rangle\) and \(|\beta\rangle\) are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)
- A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix \(E\) that corresponds to \(C\) expanded in the basis of its eigenvectors, i.e. calculate \(\langle\alpha|C|\alpha\rangle\), \(\langle\alpha|C|\beta\rangle\), \(\langle\beta|C|\alpha\rangle\) and \(\langle\beta|C|\beta\rangle\) and arrange them into a sensible matrix \(E\). Explain why you arranged the matrix elements in the order that you did.
- Find the determinants of \(C\) and \(E\). How do these determinants compare to the eigenvalues of these matrices?

First complete the problem *Diagonalization*. In that notation:

- Find the matrix \(S\) whose columns are \(|\alpha\rangle\) and \(|\beta\rangle\). Show that \(S^{\dagger}=S^{-1}\) by calculating \(S^{\dagger}\) and multiplying it by \(S\). (Does the order of multiplication matter?)
- Calculate \(B=S^{-1} C S\). How is the matrix \(E\) related to \(B\) and \(C\)? The transformation that you have just done is an example of a “change of basis”, sometimes called a “similarity transformation.” When the result of a change of basis is a diagonal matrix, the process is called diagonalization.

None

At low temperatures, a diatomic molecule can be well described as a
*rigid rotor*. The Hamiltonian of such a system is simply
proportional to the square of the angular momentum
\begin{align}
H &= \frac{1}{2I}L^2
\end{align}
and the energy eigenvalues are
\begin{align}
E_{\ell m} &= \hbar^2 \frac{\ell(\ell+1)}{2I}
\end{align}

What is the energy of the ground state and the first and second excited states of the \(H_2\) molecule? i.e. the lowest three distinct energy eigenvalues.

At room temperature, what is the relative probability of finding a hydrogen molecule in the \(\ell=0\) state versus finding it in any one of the \(\ell=1\) states?

i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=1,m=-1} + P_{\ell=1,m=0} + P_{\ell=1,m=1}\right)\)At what temperature is the value of this ratio 1?

- At room temperature, what is the probability of
finding a hydrogen molecule in any one of the \(\ell=2\) states versus
that of finding it in the ground state?

i.e. what is \(P_{\ell=0,m=0}/\left(P_{\ell=2,m=-2} + P_{\ell=2,m=-1} + \cdots + P_{\ell=2,m=2}\right)\)

For an infinitesimally thin cylindrical shell of radius \(b\) with uniform surface charge density \(\sigma\), the electric field is zero for \(s<b\) and \(\vec{E}= \frac{\sigma b}{\epsilon_0 s}\, \hat s\) for \(s > b\). Use the differential form of Gauss' Law to find the charge density everywhere in space.

Find the total differential of the following functions:

- \(y=3x^2 + 4\cos 2x\)
- \(y=3x^2\cos kx\) (where \(k\) is a constant)
- \(y=\frac{\cos 7x}{x^2}\)
- \(y=\cos(3x^2-2)\)

Find the total differential of the following functions:

- \(y=3u^2 + 4\cos 3v\)
- \(y=3uv\)
- \(y=3u^2\cos wv\)
- \(y=u\cos(3v^2-2)\)

- \(\left\langle {\Psi}\middle|{\Psi}\right\rangle =1\) Identify and discuss the dimensions of \(\left|{\Psi}\right\rangle \).
- For a spin \(\frac{1}{2}\) system, \(\left\langle {\Psi}\middle|{+}\right\rangle \left\langle {+}\middle|{\Psi}\right\rangle + \left\langle {\Psi}\middle|{-}\right\rangle \left\langle {-}\middle|{\Psi}\right\rangle =1\). Identify and discuss the dimensions of \(\left|{+}\right\rangle \) and \(\left|{-}\right\rangle \).
- In the position basis \(\int \left\langle {\Psi}\middle|{x}\right\rangle \left\langle {x}\middle|{\Psi}\right\rangle dx = 1\). Identify and discuss the dimesions of \(\left|{x}\right\rangle \).

None

For this problem, use the vectors \(|a\rangle = 4 |1\rangle - 3 |2\rangle\) and \(|b\rangle = -i |1\rangle + |2\rangle\).

- Find \(\langle a | b \rangle\) and \(\langle b | a \rangle\). Discuss how these two inner products are related to each other.
- For \(\hat{Q}\doteq \begin{pmatrix} 2 & i \\ -i & -2 \end{pmatrix} \), calculate \(\langle1|\hat{Q}|2\rangle\), \(\langle2|\hat{Q}|1\rangle\), \(\langle a|\hat{Q}| b \rangle\) and \(\langle b|\hat{Q}|a \rangle\).
- What kind of mathematical object is \(|a\rangle\langle b|\)? What is the result if you multiply a ket (for example, \(| a\rangle\) or \(|1\rangle\)) by this expression? What if you multiply this expression by a bra?

You are on a hike. The altitude nearby is described by the function \(f(x, y)= k x^{2}y\), where \(k=20 \mathrm{\frac{m}{km^3}}\) is a constant, \(x\) and \(y\) are east and north coordinates, respectively, with units of kilometers. You're standing at the spot \((3~\mathrm{km},2~\mathrm{km})\) and there is a cottage located at \((1~\mathrm{km}, 2~\mathrm{km})\). You drop your water bottle and the water spills out.

- Plot the function \(f(x, y)\) and also its level curves in your favorite plotting software. Include images of these graphs. Special note: If you use a computer program written by someone else, you must reference that appropriately.
- In which direction in space does the water flow?
- At the spot you're standing, what is the slope of the ground in the direction of the cottage?
- Does your result to part (c) make sense from the graph?

The distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

- Find the distance \(\left\vert\vec r -\vec r\,{}'\right\vert\) between the point \(\vec r\) and the point \(\vec r'\) in rectangular coordinates.
- Show that this same distance written in cylindrical coordinates is: \begin{equation} \left|\vec r -\vec r\,{}'\right| =\sqrt{s^2+s\,{}'^2-2ss\,{}'\cos(\phi-\phi\,{}') +(z-z\,{}')^2} \end{equation}
- Show that this same distance written in spherical coordinates is: \begin{equation} \left\vert\vec r -\vec r\,{}'\right\vert =\sqrt{r'^2+r\,{}^2-2rr\,{}' \left[\sin\theta\sin\theta\,{}'\cos(\phi-\phi\,{}') +\cos\theta\cos\theta\,{}'\right]} \end{equation}
- Now assume that \(\vec r\,{}'\) and \(\vec r\) are in the \(x\)-\(y\) plane. Simplify the previous two formulas.

Let us imagine a new mechanics in which the allowed occupancies of an orbital are 0, 1, and 2. The values of the energy associated with these occupancies are assumed to be \(0\), \(\varepsilon\), and \(2\varepsilon\), respectively.

Derive an expression for the ensemble average occupancy \(\langle N\rangle\), when the system composed of this orbital is in thermal and diffusive contact with a resevoir at temperature \(T\) and chemical potential \(\mu\).

Return now to the usual quantum mechanics, and derive an expression for the ensemble average occupancy of an energy level which is doubly degenerate; that is, two orbitals have the identical energy \(\varepsilon\). If both orbitals are occupied the toal energy is \(2\varepsilon\). How does this differ from part (a)?

None

Shown above is a two-dimensional vector field.

Determine whether the divergence at point A and at point C is positive, negative, or zero.

Calculate the divergence of each of the following vector fields. You may look up the formulas for divergence in curvilinear coordinates.

- \begin{equation} \hat{F}=z^2\,\hat{x} + x^2 \,\hat{y} -y^2 \,\hat{z} \end{equation}
- \begin{equation} \hat{G} = e^{-x} \,\hat{x} + e^{-y} \,\hat{y} +e^{-z} \,\hat{z} \end{equation}
- \begin{equation} \hat{H} = yz\,\hat{x} + zx\,\hat{y} + xy\,\hat{z} \end{equation}
- \begin{equation} \hat{I} = x^2\,\hat{x} + z^2\,\hat{y} + y^2\,\hat{z} \end{equation}
- \begin{equation} \hat{J} = xy\,\hat{x} + xz\,\hat{y} + yz\,\hat{z} \end{equation}
- \begin{equation} \hat{K} = s^2\,\hat{s} \end{equation}
- \begin{equation} \hat{L} = r^3\,\hat{\phi} \end{equation}

Consider the vector field \(\vec F=(x+2)\hat{x} +(z+2)\hat{z}\).

- Calculate the divergence of \(\vec F\).
- In which direction does the vector field \(\vec F\) point on the plane \(z=x\)? What is the value of \(\vec F\cdot \hat n\) on this plane where \(\hat n\) is the unit normal to the plane?
- Verify the divergence theorem for this vector field where the volume involved is drawn below. (“Verify” means calculate both sides of the divergence theorem, separately, for this example and show that they are the same.)

See also the following more detailed problem and solution: Effective Potentials: Graphical Version

An electron is moving on a two dimension surface with a radially symmetric electrostatic potential given by the graph below:

- Sketch the effective potential if the angular momentum is
**not**zero. - Describe qualitatively, the shapes of all possible types of orbits, indicating the energy for each in your diagram.

Consider a mass \(\mu\) in the potential shown in the graph below. You give the mass a push so that its initial angular momentum is \(\ell\ne 0\) for a given fixed value of \(\ell\).

- Give the definition of a central force system and briefly explain why this situation qualifies.
- Make a sketch of the graph of the effective potential for this situation.
- How should you push the puck to establish a circular orbit? (i.e. Characterize the initial position, direction of push, and strength of the push. You do NOT need to solve any equations.)
- BRIEFLY discuss the possible orbit shapes that can arise from this effective potential. Include a discussion of whether the orbits are open or closed, bound or unbound, etc. Make sure that you refer to your sketch of the effective potential in your discussions, mark any points of physical significance on the sketch, and describe the range of parameters relevant to each type of orbit. Include a discussion of the role of the total energy of the orbit.

None

Consider the arbitrary Pauli matrix \(\sigma_n=\hat n\cdot\vec
\sigma\) where \(\hat n\) is the unit vector pointing in an arbitrary
direction.

- Find the eigenvalues and normalized eigenvectors for \(\sigma_n\). The answer is: \[ \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\phi/2}\\{} \sin\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\phi/2}\\{} \cos\frac{\theta}{2}e^{i\phi/2}\\ \end{pmatrix} \] It is not sufficient to show that this answer is correct by plugging into the eigenvalue equation. Rather, you should do all the steps of finding the eigenvalues and eigenvectors as if you don't know the answer. Hint: \(\sin\theta=\sqrt{1-\cos^2\theta}\).
- Show that the eigenvectors from part (a) above are orthogonal.
- Simplify your results from part (a) above by considering the three separate special cases: \(\hat n=\hat\imath\), \(\hat n=\hat\jmath\), \(\hat n=\hat k\). In this way, find the eigenvectors and eigenvalues of \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\).

- Find the eigenvalues and normalized eigenvectors of the Pauli matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) (see the Spins Reference Sheet posted on the course website).

**Einstein condensation temperature** Starting
from the density of free particle orbitals per unit energy range
\begin{align}
\mathcal{D}(\varepsilon) =
\frac{V}{4\pi^2}\left(\frac{2M}{\hbar^2}\right)^{\frac32}\varepsilon^{\frac12}
\end{align} show that the lowest temperature at which the total number
of atoms in excited states is equal to the total number of atoms is
\begin{align}
T_E &=
\frac1{k_B}
\frac{\hbar^2}{2M}
\left(
\frac{N}{V}
\frac{4\pi^2}{\int_0^\infty\frac{\sqrt{\xi}}{e^\xi-1}d\xi}
\right)^{\frac23}
T_E &=
\end{align} The infinite sum may be numerically evaluated to be 2.612.
Note that the number derived by integrating over the density of
states, since the density of states includes all the states
*except* the ground state.

**Note:** This problem is solved in the text itself. I intend to
discuss Bose-Einstein condensation in class, but will not derive this
result.

Consider the electric field
\begin{equation}
\vec E(r,\theta,\phi) =
\begin{cases}
0&\textrm{for } r<a\\
\frac{1}{4\pi\epsilon_0} \,\frac{Q}{b^3-a^3}\,
\left( r-\frac{a^3}{r^2}\right)\, \hat r & \textrm{for } a<r<b\\
0 & \textrm{for } r>b \\
\end{cases}
\end{equation}

- Use step and/or delta functions to write this electric field as a single expression valid everywhere in space.
- Find a formula for the charge density that creates this electric field.
- Interpret your formula for the charge density, i.e. explain briefly in words where the charge is.